Skip to main content
Log in

Mechanical Stimulation of Bone Marrow In Situ Induces Bone Formation in Trabecular Explants

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Low magnitude high frequency (LMHF) loading has been shown to have an anabolic effect on trabecular bone in vivo. However, the precise mechanical signal imposed on the bone marrow cells by LMHF loading, which induces a cellular response, remains unclear. This study investigates the influence of LMHF loading, applied using a custom designed bioreactor, on bone adaptation in an explanted trabecular bone model, which isolated the bone and marrow. Bone adaptation was investigated by performing micro CT scans pre and post experimental LMHF loading, using image registration techniques. Computational fluids dynamic models were generated using the pre-experiment scans to characterise the mechanical stimuli imposed by the loading regime prior to adaptation. Results here demonstrate a significant increase in bone formation in the LMHF loaded group compared to static controls and media flow groups. The calculated shear stress in the marrow was between 0.575 and 0.7 Pa, which is within the range of stimuli known to induce osteogenesis by bone marrow mesenchymal stem cells in vitro. Interestingly, a correlation was found between the bone formation balance (bone formation/resorption), trabecular number, trabecular spacing, mineral resorption rate, bone resorption rate and mean shear stresses. The results of this study suggest that the magnitude of the shear stresses generated due to LMHF loading in the explanted bone cores has a contributory role in the formation of trabecular bone and improvement in bone architecture parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell. Sci. 122:546–553, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bacabac, R. G., T. H. Smit, J. J. W. A. Van Loon, B. Z. Doulabi, M. Helder, and J. Klein-Nulend. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J. 20:858–864, 2006.

    Article  CAS  PubMed  Google Scholar 

  3. Bakker, A. D., M. Joldersma, J. Klein-Nulend, and E. H. Burger. Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am. J. Physiol. Endocrinol. Metab. 285:E608–E613, 2003.

    Article  CAS  PubMed  Google Scholar 

  4. Birmingham, E., G. L. Niebur, P. E. McHugh, G. Shaw, F. P. Barry, and L. M. McNamara. Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur. Cell. Mater. 23:13–27, 2012.

    CAS  PubMed  Google Scholar 

  5. Birmingham, E., J. A. Grogan, G. L. Niebur, L. M. McNamara, and P. E. McHugh. Computational modelling of the mechanics of trabecular bone and marrow using fluid structure interaction techniques. Ann. Biomed. Eng. 41:814–826, 2013.

    Article  CAS  PubMed  Google Scholar 

  6. Bonewald, L. F., and M. L. Johnson. Osteocytes, mechanosensing and Wnt signaling. Bone 42:606–615, 2008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Brouwers, J. E. M., B. van Rietbergen, K. Ito, and R. Huiskes. Effects of vibration treatment on tibial bone of ovariectomized rats analyzed by in vivo micro-CT. J. Orthop. Res. 28:62–69, 2010.

    PubMed  Google Scholar 

  8. Bryant, J. D., T. David, P. H. Gaskell, S. King, and G. Lond. Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. H 203:71–75, 1989.

    Article  CAS  PubMed  Google Scholar 

  9. Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J. 13(Suppl):S101–S112, 1999.

    CAS  PubMed  Google Scholar 

  10. Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin. In Vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410, 1996.

    Article  CAS  PubMed  Google Scholar 

  11. Cartmell, S. H., B. D. Porter, A. J. García, and R. E. Guldberg. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng. 9:1197–1203, 2003.

    Article  CAS  PubMed  Google Scholar 

  12. Castillo, A. B., and C. R. Jacobs. Mesenchymal stem cell mechanobiology. Curr. Osteoporos Rep. 8:98–104, 2010.

    Article  PubMed  Google Scholar 

  13. Chan, M. E., G. Uzer, and C. T. Rubin. The potential benefits and inherent risks of vibration as a non-drug therapy for the prevention and treatment of osteoporosis. Curr. Osteoporos Rep. 11:36–44, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Coughlin, T. R., and G. L. Niebur. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J. Biomech. 45:2222–2229, 2012.

    Article  PubMed  Google Scholar 

  15. Cowin, S. C. Bone Mechanics Handbook (2nd ed.). New York: Taylor & Francis, p. 981, 2001.

    Google Scholar 

  16. Dallas, S. L., G. Zaman, M. J. Pead, and L. E. Lanyon. Early strain-related changes in cultured embryonic chick tibiotarsi parallel those associated with adaptive modeling in vivo. J. Bone Miner. Res. 8:251–259, 1993.

    Article  CAS  PubMed  Google Scholar 

  17. David, V., A. Guignandon, A. Martin, L. Malaval, M.-H. Lafage-Proust, A. Rattner, V. Mann, B. Noble, D. B. Jones, and L. Vico. Ex vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain. Tissue Eng. Part. A 14:117–126, 2008.

    CAS  PubMed  Google Scholar 

  18. Davies, C. M., D. B. Jones, M. J. Stoddart, K. Koller, E. Smith, C. W. Archer, and R. G. Richards. Mechanically loaded ex vivo bone culture system “Zetos”: systems and culture preparation. Eur. Cell Mater. 11:57–75, 2006; (discussion 75).

    CAS  PubMed  Google Scholar 

  19. Dickerson, D. A., E. A. Sander, and E. A. Nauman. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech. Model Mechanobiol. 7:191–202, 2008.

    Article  CAS  PubMed  Google Scholar 

  20. Doube, M., M. M. Kłosowski, I. Arganda-Carreras, F. P. Cordelières, R. P. Dougherty, J. S. Jackson, B. Schmid, J. R. Hutchinson, and S. J. Shefelbine. BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Endres, S., M. Kratz, S. Wunsch, and D. B. Jones. Zetos: a culture loading system for trabecular bone. Investigation of different loading signal intensities on bovine bone cylinders. J. Musculoskelet. Neuronal Interact. 9:173–183, 2009.

    CAS  PubMed  Google Scholar 

  22. Fuchs, E., T. Tumbar, and G. Guasch. Socializing with the neighbors: stem cells and their niche. Cell 116:769–778, 2004.

    Article  CAS  PubMed  Google Scholar 

  23. Garman, R., G. Gaudette, L.-R. Donahue, C. Rubin, and S. Judex. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J. Orthop. Res. 25:732–740, 2007.

    Article  PubMed  Google Scholar 

  24. Garrison, J. G., C. L. Slaboch, and G. L. Niebur. Density and architecture have greater effects on the toughness of trabecular bone than damage. Bone 44:924–929, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Grellier, M., R. Bareille, C. Bourget, and J. Amédée. Responsiveness of human bone marrow stromal cells to shear stress. J. Tissue Eng. Regen. Med. 3:302–309, 2009.

    Article  CAS  PubMed  Google Scholar 

  26. Gurkan, U. A., and O. Akkus. The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36:1978–1991, 2008.

    Article  PubMed  Google Scholar 

  27. Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64:295–312, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Jones, D. B., E. Broeckmann, T. Pohl, and E. L. Smith. Development of a mechanical testing and loading system for trabecular bone studies for long term culture. Eur. Cell Mater. 5:48–59, 2003; (discussion 59–60).

    CAS  PubMed  Google Scholar 

  29. Judex, S., S. Boyd, Y.-X. Qin, S. Turner, K. Ye, R. Müller, and C. Rubin. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load. Ann. Biomed. Eng. 31:12–20, 2003.

    Article  PubMed  Google Scholar 

  30. Judex, S., X. Lei, D. Han, and C. Rubin. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J. Biomech. 40:1333–1339, 2007.

    Article  PubMed  Google Scholar 

  31. Justesen, J., K. Stenderup, E. N. Ebbesen, L. Mosekilde, T. Steiniche, and M. Kassem. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171, 2001.

    Article  CAS  PubMed  Google Scholar 

  32. Kiiski, J., A. Heinonen, T. L. Järvinen, P. Kannus, and H. Sievänen. Transmission of vertical whole body vibration to the human body. J. Bone Miner. Res. 23:1318–1325, 2008.

    Article  PubMed  Google Scholar 

  33. Kreke, M. R., W. R. Huckle, and A. S. Goldstein. Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055, 2005.

    Article  CAS  PubMed  Google Scholar 

  34. Kreke, M. R., L. A. Sharp, Y. W. Lee, and A. S. Goldstein. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. Part A 14:529–537, 2008.

    Article  CAS  PubMed  Google Scholar 

  35. Kuhn, N. Z., and R. S. Tuan. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J. Cell. Physiol 222:268–277, 2010.

    Article  CAS  PubMed  Google Scholar 

  36. Lan, S., S. Luo, B. K. Huh, A. Chandra, A. R. Altman, L. Qin, and X. S. Liu. 3D image registration is critical to ensure accurate detection of longitudinal changes in trabecular bone density, microstructure, and stiffness measurements in rat tibiae by in vivo microcomputed tomography (μCT). Bone 56:83–90, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Liney, G. P., C. P. Bernard, D. J. Manton, L. W. Turnbull, and C. M. Langton. Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0 Tesla. J. Magn. Reson. Imaging 26:787–793, 2007.

    Article  PubMed  Google Scholar 

  38. Mann, V., C. Huber, G. Kogianni, D. Jones, and B. Noble. The influence of mechanical stimulation on osteocyte apoptosis and bone viability in human trabecular bone. J. Musculoskelet. Neuronal Interact. 6:408–417, 2006.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Manske, S. L., C. A. Good, R. F. Zernicke, and S. K. Boyd. High-frequency, low-magnitude vibration does not prevent bone loss resulting from muscle disuse in mice following Botulinum toxin injection. PLoS ONE 7(5):e36486, 2012.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Parfitt, A. M. The cellular basis of bone turnover and bone loss: a rebuttal of the osteocytic resorption—bone flow theory. Clin. Orthop. Relat. Res. 127:236–247, 1977.

    PubMed  Google Scholar 

  41. Pitsillides, A. A., S. C. Rawlinson, R. F. Suswillo, S. Bourrin, G. Zaman, and L. E. Lanyon. Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J. 9:1614–1622, 1995.

    CAS  PubMed  Google Scholar 

  42. Qin, Y. X., H. Lam, S. Ferreri, and C. Rubin. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J. Musculoskelet. Neuronal Interact. 10:12–24, 2010.

    CAS  PubMed  Google Scholar 

  43. Riddle, R. C., A. F. Taylor, D. C. Genetos, and H. J. Donahue. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am. J. Physiol. Cell Physiol. 290:C776–C784, 2006.

    Article  CAS  PubMed  Google Scholar 

  44. Rosen, C. J., and M. L. Bouxsein. Mechanisms of disease: is osteoporosis the obesity of bone? Nat. Clin. Pract. Rheumatol. 2:35–43, 2006.

    Article  CAS  PubMed  Google Scholar 

  45. Rubin, C. T., and L. E. Lanyon. Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. Am. 66:397–402, 1984.

    CAS  PubMed  Google Scholar 

  46. Rubin, C., A. S. Turner, S. Bain, C. Mallinckrodt, and K. McLeod. Anabolism. Low mechanical signals strengthen long bones. Nature 412:603–604, 2001.

    Article  CAS  PubMed  Google Scholar 

  47. Rubin, C., G. Xu, and S. Judex. The anabolic activity of bone tissue, suppressed by disuse, is normalized by brief exposure to extremely low-magnitude mechanical stimuli. FASEB J. 15:2225–2229, 2001.

    Article  CAS  PubMed  Google Scholar 

  48. Rubin, C., A. S. Turner, C. Mallinckrodt, C. Jerome, K. McLeod, and S. Bain. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30:445–452, 2002.

    Article  CAS  PubMed  Google Scholar 

  49. Rubin, C., A. S. Turner, R. Müller, E. Mittra, K. McLeod, W. Lin, and Y.-X. Qin. Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J. Bone Miner. Res. 17:349–357, 2002.

    Article  PubMed  Google Scholar 

  50. Rubin, C., R. Recker, D. Cullen, J. Ryaby, J. McCabe, and K. McLeod. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli: a clinical trial assessing compliance, efficacy, and safety. J. Bone Miner. Res. 19:343–351, 2004.

    Article  PubMed  Google Scholar 

  51. Schulte, F. A., F. M. Lambers, G. Kuhn, and R. Müller. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone 48:433–442, 2011.

    Article  PubMed  Google Scholar 

  52. Sharp, L. A., Y. W. Lee, and A. S. Goldstein. Effect of low-frequency pulsatile flow on expression of osteoblastic genes by bone marrow stromal cells. Ann. Biomed. Eng. 37:445–453, 2009.

    Article  PubMed  Google Scholar 

  53. Simulia, D. S. Abaqus 6.12 Theory Manual. Providence, RI: DS SIMULIA Corp., 2012.

  54. Turner, C. H., Y. Takano, I. Owan, and G. A. Murrell. Nitric oxide inhibitor L-NAME suppresses mechanically induced bone formation in rats. Am. J. Physio.l Endocrinol. Metab. 270:E634–E639, 1996.

    CAS  Google Scholar 

  55. Uzer, G., S. L. Manske, M. E. Chan, F.-P. Chiang, C. T. Rubin, M. D. Frame, and S. Judex. Separating fluid shear stress from acceleration during vibrations in vitro: identification of mechanical signals modulating the cellular response. Cell. Mol. Bioeng. 5:266–276, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Van de Berg, B. C., J. Malghem, F. E. Lecouvet, and B. Maldague. Magnetic resonance imaging of the normal bone marrow. Skelet. Radiol. 27:471–483, 1998.

    Article  Google Scholar 

  57. Verschueren, S. M. P., M. Roelants, C. Delecluse, S. Swinnen, D. Vanderschueren, and S. Boonen. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women: a randomized controlled pilot study. J. Bone Miner. Res. 19:352–359, 2004.

    Article  PubMed  Google Scholar 

  58. Watt, F. M., and B. L. Hogan. Out of Eden: stem cells and their niches. Science 287:1427–1430, 2000.

    Article  CAS  PubMed  Google Scholar 

  59. Weisberg, S. P., D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112:1796–1808, 2003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Xie, L., J. M. Jacobson, E. S. Choi, B. Busa, L. R. Donahue, L. M. Miller, C. T. Rubin, and S. Judex. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39:1059–1066, 2006.

    Article  PubMed  Google Scholar 

  61. Yeung, D. K. W., J. F. Griffith, G. E. Antonio, F. K. H. Lee, J. Woo, and P. C. Leung. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J. Magn. Reson. Imaging 22:279–285, 2005.

    Article  PubMed  Google Scholar 

  62. Zhong, Z., and O. Akkus. Effects of age and shear rate on the rheological properties of human yellow bone marrow. Biorheology 48:89–97, 2011.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the Irish Research Council, under the EMBARK program, U.S. National Science Foundation grant CMMI 1100207, Science Foundation Ireland under the Short Term Travel Fellowship and the ORS under the Collaborative Exchange Award. The authors would also like to acknowledge M.A. Varsanik for her assistance with the histology images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Birmingham.

Additional information

Associate Editor Ender A Finol oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birmingham, E., Kreipke, T.C., Dolan, E.B. et al. Mechanical Stimulation of Bone Marrow In Situ Induces Bone Formation in Trabecular Explants. Ann Biomed Eng 43, 1036–1050 (2015). https://doi.org/10.1007/s10439-014-1135-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1135-0

Keywords

Navigation