Skip to main content

Advertisement

Log in

Effect of Low-Frequency Pulsatile Flow on Expression of Osteoblastic Genes by Bone Marrow Stromal Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Perfusion culture of osteoprogenitor cells is a promising means to form a bone-like extracellular matrix for tissue engineering applications, but the mechanism by which hydrodynamic shear stimulates expression of bone extracellular matrix (ECM) proteins is not understood. Osteoblasts are mechanosensitive and respond differently to steady and pulsatile flow. Therefore, to probe the effect of flow, bone marrow stromal cells (BMSCs)—cultured under osteogenic conditions—were exposed to steady or pulsatile flow at frequencies of 0.015, 0.044, or 0.074 Hz. Following 24 h of stimulus, cells were cultured statically for an additional 13 days and then analyzed for the expression of bone ECM proteins collagen 1α1 (Col1α1), osteopontin, osteocalcin (OC), and bone sialoprotein (BSP). All mRNA levels were elevated by flow, but OC and BSP were enhanced modestly with pulsatile flow. To determine if these effects were related to gene induction during flow, BMSCs were again exposed to steady or pulsatile flow for 24 h, but then analyzed immediately for expression of growth and differentiation factors bone morphogenetic proteins (BMP)-2, -4, and -7, transforming growth factor (TGF)-β1, and vascular endothelial growth factor-A. All growth and differentiation factors were significantly elevated by flow, except BMP-4 which was suppressed. In addition, expression of BMP-2 and -7 were enhanced and TGF-β1 suppressed by pulsatile flow relative to steady flow. These results demonstrate that pulsatile flow modulates expression of BMP-2, -7, and TGF-β1 and suggest that enhanced expression of bone ECM proteins by pulsatile flow may be mediated through the induction of BMP-2 and -7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bakker A. D., K. Soejima, J. Klein-Nulend, E. H. Burger. The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J. Biomech. 34:671–677, 2001. doi:10.1016/S0021-9290(00)00231-1

    Article  PubMed  CAS  Google Scholar 

  2. Bancroft G. N., V. I. Sikavitsas, J. van den Dolder, T. L. Sheffield, C. G. Ambrose, J. A. Jansen, A. G. Mikos. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner. Proc. Natl. Acad. Sci. USA 99:12600–12605, 2002. doi:10.1073/pnas.202296599

    Article  PubMed  CAS  Google Scholar 

  3. Bruder, S. P., N. Jaiswal, N. S. Ricalton, J. D. Mosca, K. H. Kraus, and S. Kadiyala. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin. Orthop. Relat. Res. 355:S247–256, 1998. doi:10.1097/00003086-199810001-00025

    Google Scholar 

  4. Centrella M., M. C. Horowitz, J. M. Wozney, T. L. McCarthy. Transforming growth factor-beta gene family members and bone. Endocr. Rev. 15:27–39, 1994. doi:10.1210/er.15.1.27

    Article  PubMed  CAS  Google Scholar 

  5. Csiszar A., N. Labinskyy, K. E. Smith, A. Rivera, E. N. Bakker, H. Jo, J. Gardner, Z. Orosz, Z. Ungvari. Downregulation of bone morphogenetic protein 4 expression in coronary arterial endothelial cells: role of shear stress and the cAMP/protein kinase A pathway. Arterioscler. Thromb. Vasc. Biol. 27:776–782, 2007. doi:10.1161/01.ATV.0000259355.77388.13

    Article  PubMed  CAS  Google Scholar 

  6. Dennis J. E., S. E. Haynesworth, R. G. Young, A. I. Caplan. Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant. 1:23–32, 1992

    PubMed  CAS  Google Scholar 

  7. Diamond J. R., D. Kees-Folts, S. D. Ricardo, A. Pruznak, M. Eufemio. Early and persistent up-regulated expression of renal cortical osteopontin in experimental hydronephrosis. Am. J. Pathol. 146:1455–1466, 1995

    PubMed  CAS  Google Scholar 

  8. Duncan R. L., C. H. Turner. Mechanotransduction and the functional-response of bone to mechanical strain. Calcif. Tissue Int. 57:344–358, 1995. doi:10.1007/BF00302070

    Article  PubMed  CAS  Google Scholar 

  9. Fu Y., M. Hashimoto, H. Ino, M. Murakami, M. Yamazaki, H. Moriya. Spinal root avulsion-induced upregulation of osteopontin expression in the adult rat spinal cord. Acta Neuropathol. 107:8–16, 2004. doi:10.1007/s00401-003-0775-1

    Article  PubMed  CAS  Google Scholar 

  10. Gautschi O. P., S. P. Frey, R. Zellweger. Bone morphogenetic proteins in clinical applications. ANZ J. Surg. 77:626–631, 2007. doi:10.1111/j.1445-2197.2007.04175.x

    Article  PubMed  Google Scholar 

  11. Goldstein A. S., T. M. Juarez, C. D. Helmke, M. C. Gustin, A. G. Mikos. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288, 2001. doi:10.1016/S0142-9612(00)00280-5

    Article  PubMed  CAS  Google Scholar 

  12. Gomes M. E., C. M. Bossano, C. M. Johnston, R. L. Reis, A. G. Mikos. In vitro localization of bone growth factors in constructs of biodegradable scaffolds seeded with marrow stromal cells and cultured in a flow perfusion bioreactor. Tissue Eng. 12:177–188, 2006. doi:10.1089/ten.2006.12.177

    Article  PubMed  CAS  Google Scholar 

  13. Haynesworth S. E., J. Goshima, V. M. Goldberg, A. I. Caplan. Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88, 1992. doi:10.1016/8756-3282(92)90364-3

    Article  PubMed  CAS  Google Scholar 

  14. Heinemeier K. M., J. L. Olesen, F. Haddad, H. Langberg, M. Kjaer, K. M. Baldwin, P. Schjerling. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J. Physiol. 582:1303–1316, 2007. doi:10.1113/jphysiol.2007.127639

    Article  PubMed  CAS  Google Scholar 

  15. Hillsley M. V., J. A. Frangos. Bone tissue engineering: the role of interstitial fluid flow. Biotechnol. Bioeng. 43:573–581, 1994. doi:10.1002/bit.260430706

    Article  PubMed  CAS  Google Scholar 

  16. Holt C. I., M. O. Hutchins, R. Pileggi. A real time quantitative PCR analysis and correlation of COX-1 and COX-2 enzymes in inflamed dental pulps following administration of three different NSAIDs. J. Endod. 31:799–804, 2005. doi:10.1097/01.don.0000158239.97520.de

    Article  PubMed  Google Scholar 

  17. Huang L., Y. Pu, S. Alam, L. Birch, G. S. Prins. The role of Fgf10 signaling in branching morphogenesis and gene expression of the rat prostate gland: lobe-specific suppression by neonatal estrogens. Dev. Biol. 278:396–414, 2005. doi:10.1016/j.ydbio.2004.11.020

    Article  PubMed  CAS  Google Scholar 

  18. Huang Y. C., D. Kaigler, K. G. Rice, P. H. Krebsbach, D. J. Mooney. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration. J. Bone Miner. Res. 20:848–857, 2005. doi:10.1359/JBMR.041226

    Article  PubMed  CAS  Google Scholar 

  19. Israel D. I., J. Nove, K. M. Kerns, R. J. Kaufman, V. Rosen, K. A. Cox, J. M. Wozney. Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo. Growth Factors 13:291–300, 1996. doi:10.3109/08977199609003229

    Article  PubMed  CAS  Google Scholar 

  20. Jacobs C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31:969–976, 1998. doi:10.1016/S0021-9290(98)00114-6

    Article  PubMed  CAS  Google Scholar 

  21. Jiang G. L., C. R. White, H. Y. Stevens, J. A. Frangos. Temporal gradients in shear stimulate osteoblastic proliferation via ERK1/2 and retinoblastoma protein. Am. J. Physiol. Endocrinol. Metab. 283:E383–389, 2002

    PubMed  CAS  Google Scholar 

  22. Kreke M. R., A. S. Goldstein. Hydrodynamic shear stimulates osteocalcin expression but not proliferation of bone marrow stromal cells. Tissue Eng. 10:780–788, 2004. doi:10.1089/1076327041348455

    Article  PubMed  Google Scholar 

  23. Kreke M. R., W. R. Huckle, A. S. Goldstein. Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055, 2005. doi:10.1016/j.bone.2005.03.008

    Article  PubMed  CAS  Google Scholar 

  24. Kreke M. R., L. A. Sharp, Y. W. Lee, A. S. Goldstein. Effect of intermittent shear stress on mechanotransductive signaling and osteoblastic differentiation of bone marrow stromal cells. Tissue Eng. 14:429–537, 2008

    Google Scholar 

  25. Li Y. J., N. N. Batra, L. D. You, S. C. Meier, I. A. Coe, C. E. Yellowley, C. R. Jacobs. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J. Orthop. Res. 22:1283–1289, 2004. doi:10.1016/j.orthres.2004.04.002

    Article  PubMed  CAS  Google Scholar 

  26. Lieberman J. R., A. Daluiski, T. A. Einhorn. The role of growth factors in the repair of bone. Biology and clinical applications. J. Bone Joint Surg. Am. 84-A:1032–1044, 2002

    PubMed  Google Scholar 

  27. Livak K. J., T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408, 2001. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  28. Mayer H., H. Bertram, W. Lindenmaier, T. Korff, H. Weber, H. Weich. Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation. J. Cell. Biochem. 95:827–839, 2005. doi:10.1002/jcb.20462

    Article  PubMed  CAS  Google Scholar 

  29. McAllister T. N., T. Du, J. A. Frangos. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells. Biochem. Biophys. Res. Commun. 270:643–648, 2000. doi:10.1006/bbrc.2000.2467

    Article  PubMed  CAS  Google Scholar 

  30. McAllister T. N., J. A. Frangos. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. J. Bone Miner. Res. 14:930–936, 1999. doi:10.1359/jbmr.1999.14.6.930

    Article  PubMed  CAS  Google Scholar 

  31. McCormick S. M., V. Saini, Y. Yazicioglu, Z. N. Demou, T. J. Royston. Interdependence of pulsed ultrasound and shear stress effects on cell morphology and gene expression. Ann. Biomed. Eng. 34:436–445, 2006. doi:10.1007/s10439-005-9057-5

    Article  PubMed  Google Scholar 

  32. Nagatomi J., B. P. Arulanandam, D. W. Metzger, A. Meunier, R. Bizios. Cyclic pressure affects osteoblast functions pertinent to osteogenesis. Ann. Biomed. Eng. 31:917–923, 2003. doi:10.1114/1.1590663

    Article  PubMed  Google Scholar 

  33. Nauman E. A., R. L. Satcher, T. M. Keaveny, B. P. Halloran, D. D. Bikle. Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE(2) but no change in mineralization. J. Appl. Physiol. 90:1849–1854, 2001

    Article  PubMed  CAS  Google Scholar 

  34. Ngo T. Q., M. A. Scherer, F. H. Zhou, B. K. Foster, C. J. Xian. Expression of bone morphogenic proteins and receptors at the injured growth plate cartilage in young rats. J. Histochem. Cytochem. 54:945–954, 2006. doi:10.1369/jhc.6A6939.2006

    Article  PubMed  CAS  Google Scholar 

  35. Porter R. M., W. R. Huckle, A. S. Goldstein. Effect of dexamethasone withdrawal on osteoblastic differentiation of bone marrow stromal cells. J. Cell. Biochem. 90:13–22, 2003. doi:10.1002/jcb.10592

    Article  PubMed  CAS  Google Scholar 

  36. Ramirez-Yanez G. O., S. Hamlet, A. Jonarta, G. J. Seymour, A. L. Symons. Prostaglandin E2 enhances transforming growth factor-beta 1 and TGF-beta receptors synthesis: an in vivo and in vitro study. Prostaglandins Leukot. Essent. Fatty Acids 74:183–192, 2006. doi:10.1016/j.plefa.2006.01.003

    Article  PubMed  CAS  Google Scholar 

  37. Reich K. M., J. A. Frangos. Effect of flow on prostaglandin E2 and inositol trisphosphate levels in osteoblasts. Am. J. Physiol. 261:C428–432, 1991

    PubMed  CAS  Google Scholar 

  38. Riddle R. C., A. F. Taylor, D. C. Genetos, H. J. Donahue. MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am. J. Physiol. Cell Physiol. 290:C776–784, 2006. doi:10.1152/ajpcell.00082.2005

    Article  PubMed  CAS  Google Scholar 

  39. Sakai K., M. Mohtai, Y. Iwamoto. Fluid shear stress increases transforming growth factor beta 1 expression in human osteoblast-like cells: modulation by cation channel blockades. Calcif. Tissue Int. 63:515–520, 1998. doi:10.1007/s002239900567

    Article  PubMed  CAS  Google Scholar 

  40. Salter D. M., W. H. Wallace, J. E. Robb, H. Caldwell, M. O. Wright. Human bone cell hyperpolarization response to cyclical mechanical strain is mediated by an interleukin-1beta autocrine/paracrine loop. J. Bone Miner. Res. 15:1746–1755, 2000. doi:10.1359/jbmr.2000.15.9.1746

    Article  PubMed  CAS  Google Scholar 

  41. Smalt R., F. T. Mitchell, R. L. Howard, T. J. Chambers. Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am. J. Physiol. 273:E751–758, 1997

    PubMed  CAS  Google Scholar 

  42. Thi, M. M., D. A. Iacobas, S. Iacobas, and D. C. Spray. Fluid shear stress up-regulates vascular endothelial growth factor gene expression in osteoblasts. Ann. N Y Acad. Sci. 1117:73–81, 2007

    Google Scholar 

  43. Thi M. M., T. Kojima, S. C. Cowin, S. Weinbaum, D. C. Spray. Fluid shear stress remodels expression and function of junctional proteins in cultured bone cells. Am. J. Physiol. Cell Physiol. 284:C389–403, 2003

    PubMed  CAS  Google Scholar 

  44. Turner C. H., M. R. Forwood, M. W. Otter. Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J. 8:875–878, 1994

    PubMed  CAS  Google Scholar 

  45. Wadhwa S., S. L. Godwin, D. R. Peterson, M. A. Epstein, L. G. Raisz, C. C. Pilbeam. Fluid flow induction of cyclo-oxygenase 2 gene expression in osteoblasts is dependent on an extracellular signal-regulated kinase signaling pathway. J. Bone Miner. Res. 17:266–274, 2002. doi:10.1359/jbmr.2002.17.2.266

    Article  PubMed  CAS  Google Scholar 

  46. Weinbaum S., S. C. Cowin, Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994. doi:10.1016/0021-9290(94)90010-8

    Article  PubMed  CAS  Google Scholar 

  47. Xiao G., R. Gopalakrishnan, D. Jiang, E. Reith, M. D. Benson, R. T. Franceschi. Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J. Bone Miner. Res. 17:101–110, 2002. doi:10.1359/jbmr.2002.17.1.101

    Article  PubMed  CAS  Google Scholar 

  48. You J., G. C. Reilly, X. C. Zhen, C. E. Yellowley, Q. Chen, H. J. Donahue, C. R. Jacobs. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J. Biol. Chem. 276:13365–13371, 2001. doi:10.1074/jbc.M009846200

    Article  PubMed  CAS  Google Scholar 

  49. Zhu W., B. A. Rawlins, O. Boachie-Adjei, E. R. Myers, J. Arimizu, E. Choi, J. R. Lieberman, R. G. Crystal, C. Hidaka. Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model. J. Bone Miner. Res. 19:2021–2032, 2004. doi:10.1359/JBMR.040821

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Riley Chan for his help constructing and programming the microprocessor-driven actuator, and Alicia Williams for her help with the collection of pressure data. This project was funded by NIH under Grants R21AR051945 and R21AR055200.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron S. Goldstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharp, L.A., Lee, Y.W. & Goldstein, A.S. Effect of Low-Frequency Pulsatile Flow on Expression of Osteoblastic Genes by Bone Marrow Stromal Cells. Ann Biomed Eng 37, 445–453 (2009). https://doi.org/10.1007/s10439-008-9632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9632-7

Keywords

Navigation