Skip to main content
Log in

Pregnancy-Induced Remodeling of Collagen Architecture and Content in the Mitral Valve

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pregnancy produces rapid, non-pathological volume-overload in the maternal circulation due to the demands of the growing fetus. Using a bovine model for human pregnancy, previous work in our laboratory has shown remarkable pregnancy-induced changes in leaflet size and mechanics of the mitral valve. The present study sought to relate these changes to structural alterations in the collagenous leaflet matrix. Anterior mitral valve leaflets were harvested from non-pregnant heifers and pregnant cows (pregnancy stage estimated by fetal length). We measured changes in the thickness of the leaflet and its anatomic layers via Verhoeff-Van Gieson staining, and in collagen crimp (wavelength and percent collagen crimped) via picrosirius red staining and polarized microscopy. Collagen concentration was determined biochemically: hydroxyproline assay for total collagen and pepsin-acid extraction for uncrosslinked collagen. Small-angle light scattering (SALS) assessed changes in internal fiber architecture (characterized by degree of fiber alignment and preferred fiber direction). Pregnancy produced significant changes to collagen structure in the mitral valve. Fiber alignment decreased 17% with an 11.5° rotation of fiber orientation toward the radial axis. Collagen fiber crimp was dramatically lost, accompanied by a 53% thickening of the fibrosa, and a 16% increase in total collagen concentration, both suggesting that new collagen is being synthesized. Extractable collagen concentration was low, both in the non-pregnant and pregnant state, suggesting early crosslinking of newly-synthesized collagen. This study has shown that the mitral valve is strongly adaptive during pregnancy, with significant changes in size, collagen content and architecture in response to rapidly changing demands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Aldous, I. G., J. M. Lee, and S. M. Wells. Differential changes in the molecular stability of collagen from the pulmonary and aortic valves during the fetal-to-neonatal transition. Ann. Biomed. Eng. 38:3000–3009, 2010.

    Article  PubMed  Google Scholar 

  2. Aldous, I. G., S. P. Veres, A. Jahangir, and J. M. Lee. Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue. Am. J. Physiol. Heart Circ. Physiol. 296:H1898–H1906, 2009.

    Article  CAS  PubMed  Google Scholar 

  3. Amini, R., C. E. Eckert, K. Koomalsingh, et al. On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann. Biomed. Eng. 40:1455–1467, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Amini, R., C. A. Voycheck, R. E. Debski. A method for predicting collagen fiber realignment in non-planar tissue surfaces as applied to the glenohumeral capsule during clinically relevant deformation. J. Biomech. Eng. 236:031003-1–031003-8, 2013.

  5. Avery, N. C., and A. J. Bailey. Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand. J. Med. Sci. Sports 15:231–240, 2005.

    Article  CAS  PubMed  Google Scholar 

  6. Bergsjø, P., D. W. Denman, H. J. Hoffman, and O. Meirik. Duration of human singleton pregnancy. A population-based study. SOBS 69:197–207, 1990.

    Article  Google Scholar 

  7. Billiar, K. L., and M. S. Sacks. A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J. Biomech. 30:753–756, 1997.

    Article  CAS  PubMed  Google Scholar 

  8. Broom, N. D. The stress/strain and fatigue behaviour of glutaraldehyde preserved heart-valve tissue. J. Biomech. 10:707–724, 1977.

    Article  CAS  PubMed  Google Scholar 

  9. Campos, O., J. Andrade, J. Bocanegra, et al. Physiologic multivalvular regurgitation during pregnancy: a longitudinal Doppler echocardiographic study. Int. J. Cardiol. 40:265–272, 1993.

    Article  CAS  PubMed  Google Scholar 

  10. Cannon, D. J., and P. F. Davison. Aging, and crosslinking in mammalian collagen. Exp. Aging Res. 3:87–105, 1977.

    Article  CAS  PubMed  Google Scholar 

  11. Clapp, III, M. D., J. Ford, and M. D. Capeless. Cardiovascular function before, during, and after the first and subsequent pregnancies. Am. J. Cardiol. 80:1469–1473, 1997.

    Article  PubMed  Google Scholar 

  12. Clark, R. E., and E. H. Finke. Scanning and light microscopy of human aortic leaflets in stressed and relaxed states. J. Thorac. Cardiovasc. Surg. 67:792–804, 1974.

    CAS  PubMed  Google Scholar 

  13. Cochran, R. P., K. S. Kunzelman, C. J. Chuong, et al. Nondestructive analysis of mitral valve collagen fiber orientation. ASAIO Trans. 37:M447–M448, 1991.

    CAS  PubMed  Google Scholar 

  14. Driessen, N. J., R. A. Boerboom, J. M. Huyghe, et al. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J. Biomech. Eng. 125:549–557, 2003.

    Article  PubMed  Google Scholar 

  15. Driessen, N. J. B., C. V. C. Bouten, and F. P. T. Baaijens. Improved prediction of the collagen fiber architecture in the aortic heart valve. J. Biomech. Eng. 127:329–336, 2005.

    Article  PubMed  Google Scholar 

  16. Driessen, N. J. B., M. A. J. Cox, C. V. C. Bouten, and F. P. T. Baaijens. Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech. Model. Mechanobiol. 7:93–103, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Driessen, N. J. B., G. W. M. Peters, J. M. Huyghe, et al. Remodelling of continuously distributed collagen fibres in soft connective tissues. J. Biomech. 36:1151–1158, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Estergreen, V. L., O. L. Frost, W. R. Gomes, et al. Effect of ovariectomy on pregnancy maintenance and parturition in dairy cows. J. Dairy Sci. 50:1293–1295, 1967.

    Article  PubMed  Google Scholar 

  19. Evans, H. E., and W. O. Sack. Prenatal development of domestic and laboratory mammals: growth curves, external features and selected references. Zentralbl Veterinarmed C 2:11–45, 1973.

    CAS  PubMed  Google Scholar 

  20. Fulchiero G. J., S. M. Wells, M. S. Sacks. Alterations in collagen fiber crimp morphology with accelerated cyclic loading and transvalvular pressure fixation in porcine aortic valves. Proceedings of the Second Joint EMBS/BMES Conference. Houston, TX, USA, pp. 1248–1249, 2002.

  21. Gilbert, T. W., M. S. Sacks, J. S. Grashow, et al. Fiber kinematics of small intestinal submucosa under biaxial and uniaxial stretch. J. Biomech. Eng. 128:890–898, 2006.

    Article  PubMed  Google Scholar 

  22. Grande-Allen, K. J., J. E. Barber, K. M. Klatka, et al. Mitral valve stiffening in end-stage heart failure: evidence of an organic contribution to functional mitral regurgitation. J. Thorac. Cardiovasc. Surg. 130:783–790, 2005.

    Article  PubMed  Google Scholar 

  23. Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J. Thorac. Cardiovasc. Surg. 122:946–954, 2001.

    Article  CAS  PubMed  Google Scholar 

  24. Hunter, S., and S. Robson. Adaptation of the maternal heart in pregnancy. Br. Heart J. 68:540–543, 1992.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Joyce, E. M., J. Liao, F. J. Schoen, et al. Functional collagen fiber architecture of the pulmonary heart valve cusp. Ann. Thorac. Surg. 87:1240–1249, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kametas, N. A., F. McAuliffe, J. Hancock, et al. Maternal left ventricular mass and diastolic function during pregnancy. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 18:460–466, 2001.

    Article  CAS  Google Scholar 

  27. Keeley, F. W., J. D. Morin, and S. Vesely. Characterization of collagen from normal human sclera. Exp. Eye Res. 39:533–542, 1984.

    Article  CAS  PubMed  Google Scholar 

  28. Kindahl, H., B. Kornmatitsuk, and H. Gustafsson. The cow in endocrine focus before and after calving. Reprod. Domest. Anim. 39:217–221, 2004.

    Article  CAS  PubMed  Google Scholar 

  29. Kunzelman, K. S., R. P. Cochran, C. Chuong, et al. Finite element analysis of the mitral valve. J. Heart Valve Dis. 2:326–340, 1993.

    CAS  PubMed  Google Scholar 

  30. Kunzelman, K., D. Quick, and R. Cochran. Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann. Thorac. Surg. 66:S198–S205, 1998.

    Article  CAS  PubMed  Google Scholar 

  31. Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc. Surg. 5:427–434, 1997.

    Article  CAS  PubMed  Google Scholar 

  32. Langdon, S. E., R. Chernecky, C. A. Pereira, et al. Biaxial mechanical/structural effects of equibiaxial strain during crosslinking of bovine pericardial xenograft materials. Biomaterials 20:137–153, 1999.

    Article  CAS  PubMed  Google Scholar 

  33. Liao, J., L. Yang, J. Grashow, and M. S. Sacks. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J. Biomech. Eng. 129:78–87, 2007.

    Article  PubMed  Google Scholar 

  34. Longo, L. D. Maternal blood volume and cardiac output during pregnancy: a hypothesis of endocrinologic control. Am. J. Physiol. 245:R720–R729, 1983.

    CAS  PubMed  Google Scholar 

  35. McCarthy, K. P., L. Ring, and B. S. Rana. Anatomy of the mitral valve: understanding the mitral valve complex in mitral regurgitation. Eur. J. Echocardiogr. 11:i3–i9, 2010.

    Article  PubMed  Google Scholar 

  36. Muresian, H. The clinical anatomy of the mitral valve. Clin. Anat. 22:85–98, 2009.

    Article  PubMed  Google Scholar 

  37. Naimark, W. A., S. D. Waldman, R. J. Anderson, et al. Thermomechanical analysis of collagen crosslinking in the developing lamb pericardium. Biorheology 35:1–16, 1998.

    Article  CAS  PubMed  Google Scholar 

  38. Quick, D. W., K. S. Kunzelman, J. M. Kneebone, and R. P. Cochran. Collagen synthesis is upregulated in mitral valves subjected to altered stress. ASAIO J. 43:181–186, 2006.

    Google Scholar 

  39. Reynolds, M. Measurement of bovine plasma and blood volume during pregnancy and lactation. Am. J. Physiol. 175:118–122, 1953.

    CAS  PubMed  Google Scholar 

  40. Robson, S. C., S. Hunter, R. J. Boys, and W. Dunlop. Serial study of factors influencing changes in cardiac output during human pregnancy. Am. J. Physiol. 256:H1060–H1065, 1989.

    CAS  PubMed  Google Scholar 

  41. Robson, S. C., D. Richley, R. J. Boys, and S. Hunter. Incidence of Doppler regurgitant flow velocities during normal pregnancy. Eur. Heart J. 13:84–87, 1992.

    CAS  PubMed  Google Scholar 

  42. Sacks, M. S. Small-angle light scattering methods for soft connective tissue structural analysis. In: Encyclopedia of Biomaterials and Biomedical Engineering, Vol. 2, edited by G. E. Wnek, and G. L. Bowlin. New York: Informa Healthcare USA Inc., 2004, pp. 2450–2463.

    Google Scholar 

  43. Sacks, M. S. Biomechanics of engineered heart valve tissues. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference, Vol. 1, pp. 853–854, 2006.

  44. Sacks, M. S., C. J. Chuong, and R. More. Collagen fiber architecture of bovine pericardium. ASAIO J. 40:M632–M637, 1994.

    Article  CAS  PubMed  Google Scholar 

  45. Sacks, M., D. Smith, and E. Hiester. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25:678–689, 1997.

    Article  CAS  PubMed  Google Scholar 

  46. Sacks, M. S., D. B. Smith, and E. D. Hiester. The aortic valve microstructure: effects of transvalvular pressure. J. Biomed. Mater. Res. 41:131–141, 1998.

    Article  CAS  PubMed  Google Scholar 

  47. Silbiger, J. J., and R. Bazaz. Contemporary insights into the functional anatomy of the mitral valve. Am. Heart J. 158:887–895, 2009.

    Article  PubMed  Google Scholar 

  48. Sims, T. J., N. C. Avery, and A. J. Bailey. Quantitative determination of collagen crosslinks. Methods Mol. Biol. 139:11–26, 2000.

    CAS  PubMed  Google Scholar 

  49. Strek, M. Critical Illness in Pregnancy. In: Principles of Critical Care, Vol. 3, edited by J. Hall, G. Schmidt, and L. Wood. New York: McGraw Hill Professional, 2005, pp. 1593–1614.

    Google Scholar 

  50. Thevenaz, P., U. E. Ruttimann, and M. Unser. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Imag. Proc. 7:27–41, 1998.

    Article  CAS  Google Scholar 

  51. Thevenaz, P., and M. Unser. User-friendly semiautomated assembly of accurate image mosaics in microscopy. Microsc. Res. Tech. 7:135–146, 2007.

    Article  Google Scholar 

  52. Wells, S. M., S. L. Adamson, B. L. Langille, and J. M. Lee. Thermomechanical analysis of collagen crosslinking in the developing ovine thoracic aorta. Biorheology 35:399–414, 1998.

    Article  CAS  PubMed  Google Scholar 

  53. Wells, S. M., C. M. Pierlot, and A. D. Moeller. Physiological remodeling of the mitral valve during pregnancy. AJP Heart Circul. Physiol. 303:H878–H892, 2012.

    Article  CAS  Google Scholar 

  54. Wells, S. M., T. Sellaro, and M. S. Sacks. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials 26:2611–2619, 2005.

    Article  CAS  PubMed  Google Scholar 

  55. Woessner, J. F. Determination of hydroxyproline in connective tissues. Methodol Connect Tissue Res 23:227–234, 1984.

    Google Scholar 

Download references

Acknowledgments

The authors thank Lucas Tedesco (Department of Bioengineering, University of Pittsburgh) for performing SALS data acquisition, Patricia Colp (Department of Pathology, Dalhousie University) for sharing expertise in histological staining techniques, Maxine Langman (Department of Applied Oral Sciences, Dalhousie University) for providing biochemical technical expertise, as well as O.H. Armstrong for the supply of bovine tissues.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah M. Wells.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierlot, C.M., Lee, J.M., Amini, R. et al. Pregnancy-Induced Remodeling of Collagen Architecture and Content in the Mitral Valve. Ann Biomed Eng 42, 2058–2071 (2014). https://doi.org/10.1007/s10439-014-1077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1077-6

Keywords

Navigation