Skip to main content

Advertisement

Log in

Laser Induced Nitrogen Enhanced Titanium Surfaces for Improved Osseo-Integration

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The osseo-integration, corrosion resistance, and tribological properties of the commonly used bioimplant alloy Ti–6Al–4V were enhanced using a laser-based surface nitridation process. The biomedical properties of the laser nitrided Ti–6Al–4V were investigated using experimental and computational methodologies. Electrochemical analysis of laser nitrided titanium in simulated body fluid (SBF) was performed to assess the biomedical characteristics in near-human body conditions. Additionally, the corrosive wear performance of these laser nitrided samples was evaluated using pin-on-disk geometry with a zirconia pin counter surface in SBF to mimic the biological scenario. Osteoblast studies were conducted to evaluate cell affinity towards titanium nitrided bioimplant material. Cells adhered to all substrates, with high viability. Initial cell adhesion was revealed by focal adhesion formation on all substrates. Cells can proliferate on samples treated with 1.89 and 2.12 × 106 J/m2 laser conditions, while those treated with 1.70 × 106 J/m2 inhibited proliferation. Thus, microstructural and phase observations, electrochemical analyses, corrosive wear evaluation, and cell behavior analysis of laser nitrided surface of bioimplant material (Ti–6Al–4V) indicated that laser nitriding greatly improves the performance of bioimplant material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Albrektsson, T., and C. Johansson. Osteoinduction, osteoconduction and osseointegration. Eur. Spine J. 10:96–101, 2001.

    Article  Google Scholar 

  2. Annunziata, M., L. Guida, L. Perillo, R. Aversa, I. Passaro, and A. Oliva. Biological response of human bone marrow stromal cells to sandblasted titanium nitride-coated implant surfaces. J. Mater. Sci. Mater. Med. 19:3585–3591, 2008.

    Article  CAS  PubMed  Google Scholar 

  3. Basu, B., D. Katti, and A. Kumar. Advanced Biomaterials: Fundamentals, Processing, and Applications. Hoboken, N.J.; [Westerville, Ohio]: John Wiley & Sons; The American Ceramic Society, 2009.

  4. Biswas, A., T. K. Maity, U. K. Chatterjee, I. Manna, L. Li, and J. D. Majumdar. Laser surface nitriding of Ti–6Al–4V for bio-implant application. Lasers Eng. 17:59–73, 2006.

    Google Scholar 

  5. Black, J. Biological Performance of Materials: Fundamentals of Biocompatibility. New York: Taylor & Francis Group, 2006.

    Google Scholar 

  6. Bordji, K., J. Y. Jouzeau, D. Mainard, E. Payan, P. Netter, K. T. Rie, T. Stucky, and M. Hage-Ali. Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials 17:929–940, 1996.

    Article  CAS  PubMed  Google Scholar 

  7. Boyan, B. D., T. W. Hummert, D. D. Dean, and Z. Schwartz. Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17:137–146, 1996.

    Article  CAS  PubMed  Google Scholar 

  8. Chung, K. H., G. T. Liu, J. G. Duh, and J. H. Wang. Biocompatibility of a titanium–aluminum nitride film coating on a dental alloy. Surf. Coat. Technol. 188–189:745–749, 2004.

    Article  Google Scholar 

  9. Curtis, A. S. G. Mechanical tensing of cells and chromosome arrangement. In: Biomechanics and Cells, edited by F. Lyall and A. J. El Haj. Cambridge: Cambridge University Press, 1994, pp. 121–130.

  10. Dahotre, S. N., H. D. Vora, K. Pavani, and R. Banerjee. An integrated experimental and computational approach to laser surface nitriding of Ti–6Al–4V. Appl. Surf. Sci. 271:141–148, 2013.

    Google Scholar 

  11. Davis, J. R. Corrosion: Understanding the Basics. ASM International, 2000.

  12. Donachie, M. J. Titanium: A Technical Guide. Materials Park, OH: ASM International, 2000.

    Google Scholar 

  13. Höche, D., and P. Schaaf. Laser nitriding: investigations on the model system TiN. A review. Heat Mass Transf. 47:519–540, 2011.

    Article  Google Scholar 

  14. Huang, L., Z. Cao, H. M. Meyer, P. K. Liaw, E. Garlea, J. R. Dunlap, T. Zhang, and W. He. Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: effects of composition and roughness. Acta Biomater. 7:395–405, 2011.

    Article  CAS  PubMed  Google Scholar 

  15. Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA 107(11):4872–4877, 2010.

    Google Scholar 

  16. Lütjering, G., and J. C. Williams. Titanium. Berlin: Springer, 2007.

    Google Scholar 

  17. McCafferty, E. Validation of corrosion rates measured by the Tafel extrapolation method. Corros. Sci. 47:3202–3215, 2005.

    Article  CAS  Google Scholar 

  18. Oshida, Y. Bioscience and bioengineering of titanium materials. The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK: Elsevier, 2007.

  19. Paital, S. R., and N. B. Dahotre. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca–P bioceramic coating. Acta Biomater. 5:2763–2772, 2009.

    Article  CAS  PubMed  Google Scholar 

  20. Ratner, B. D. Biomaterials Science an Introduction to Materials in Medicine. San Diego, CA: Academic Press, 2004.

  21. Razavi, R. S., G. R. Gordani, and H. C. Man. A review of the corrosion of laser nitrided Ti–6Al–4V. Anti-Corros. Methods Mater. 58(3):140–154, 2011.

    Google Scholar 

  22. Razavi, R. S., M. Salehi, M. Monirvaghefi, and R. Mozafarinia. Effect of laser gas nitriding on the microstructure and corrosion properties of Ti–6Al–4V alloy. ISIJ Int. 47:709–714, 2007.

    Google Scholar 

  23. Ruff, A. W. Wear measurements. In: ASM Handbook on Friction, edited by S. D. Henry. Materials Park, OH: Lubrication and Wear Technology, pp. 362–369, 1998.

  24. Schaaf, P. Laser nitriding of metals. Prog. Mater Sci. 47:1–161, 2002.

    Article  CAS  Google Scholar 

  25. Singh, R., A. Kurella, and N. B. Dahotre. Laser surface modification of Ti–6Al–4V: wear and corrosion characterization in simulated biofluid. J. Biomater. Appl. 21:49–73, 2006.

    Google Scholar 

  26. Sovak, G., A. Weiss, and I. Gotman. Osseointegration of Ti6Al4V alloy implants coated with titanium nitride by a new method. J. Bone Joint. Surg. Br. 82:290–296, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Szklarska-Smialowska, Z. National Association of Corrosion Engineers. Pitting Corrosion of Metals. Houston, TX: National Association of Corrosion Engineers, 1986.

  28. Van Noort, R. Titanium: the implant material of today. J. Mater. Sci. 22:3801–3811, 1987.

    Article  Google Scholar 

  29. Yang, Y., R. Cavin, and J. L. Ong. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. J. Biomed. Mater. Res. A 67:344–349, 2003.

    Article  PubMed  Google Scholar 

  30. Yang, J., Y. Ting, J. Lai, H. Liu, H. Fang, and W. Tsai. Quantitative analysis of osteoblast-like cells (MG63) morphology on nanogrooved substrata with various groove and ridge dimensions. J. Biomed. Mater. Res. A 90:629–640, 2009.

    Article  PubMed  Google Scholar 

  31. Yilbas, B. S., C. Karatas, B. Ersu, and S. Gurgan. Laser gas-assisted nitriding of Ti implant. Ind. Lubr. Tribol. 63:4:293–302, 2011.

    Google Scholar 

  32. Yilbas, B. S., S. Z. Shuja, and M. S. J. Hashmi. A numerical solution for laser heating of titanium and nitrogen diffusion in solid. J. Mater. Process. Technol. 136:12–23, 2003.

    Article  CAS  Google Scholar 

  33. Zaveri, N. A. Biocorrosion Studies of Surface Modified Bioimplant Materials in Simuated Body Fluids. Logan, UT: Utah State University, 2007.

    Google Scholar 

  34. Zhecheva, A., W. Sha, S. Malinov, and A. Long. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coat. Technol. 200:2192–2207, 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate Iman Ghamarian, Vasim Shaikh, Yee-Hsien Ho, and Pavani Kami for their help in experimental investigations especially for SEM, XRD, surface roughness and contact angle measurements. Availability of the characterization facility in the Center for Advanced Research Technology (CART) at the University of North Texas is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra B. Dahotre.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahotre, S.N., Vora, H.D., Rajamure, R.S. et al. Laser Induced Nitrogen Enhanced Titanium Surfaces for Improved Osseo-Integration. Ann Biomed Eng 42, 50–61 (2014). https://doi.org/10.1007/s10439-013-0898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0898-z

Keywords

Navigation