Skip to main content

Advertisement

Log in

Pulsed laser-deposited hopeite coatings on titanium alloy for orthopaedic implant applications: surface characterization, antibacterial and bioactivity studies

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Although titanium and its alloys hold a significant position as an implant material for orthopedic and dental applications, they exhibit limited osteogenic and protective performance. The present research aims to develop an alternate process route for deposition of hopeite coatings on Titanium Grade 5 alloy (Ti–6Al–4V), using the pulsed laser deposition (PLD) technique. SEM, AFM and XRD were used to characterize and ellipsometer and tensometer were used to test the thickness and adhesive strength of the deposited hopeite coatings. While the FACS technique was used to assess their antibacterial activity, the simulated body fluid immersion test was utilized to ascertain their bioactivity. Lastly surface wettability and corrosion resistance of the hopeite coatings were evaluated using contact angle goniometer and potentiostat/galvanostat potentiodynamic (model PARSTAT 2263, Princeton Applied Research, USA), respectively. The PLD technique resulted in the deposition of hopeite coatings with desired crystallinity, adhesive strength of (16.52 ± 1.8 MPa), bioactivity, hydrophobic surface (water contact angle = 135°), superior corrosion resistance (Rp = 34,138.68 Ω cm2) and average surface roughness of (7.43 nm), which is likely to promote better osseointegration. The promising biological characteristics obtained in this research confirmed that the PLD hopeite coatings could be potentially used in orthopaedic implant applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yang WH, Xi XF, Si Y, Huang S, Wang JF, Cai KY (2014) Surface engineering of titanium alloy substrates with multilayered biomimetic hierarchical films to regulate the growth behaviors of osteoblasts. Acta Biomater 10:4525–4536

    Article  Google Scholar 

  2. Hallab NJ, Vermes C, Messina C, Roebuck KA, Glant TT, Jacobs JJ (2002) Concentration and composition dependent effects of metal ions on human MG-63 osteoblasts. J Biomed Mater Res 60:420–433

    Article  Google Scholar 

  3. Sun ZL, Wataha JC, Hanks CT (1997) Effects of metal ions on osteoblast like cell metabolism and differentiation. J Biomed Mater Res 34:29–37

    Article  Google Scholar 

  4. Thompson GJ, Puelo DA (1996) Ti–6Al–4V ion solution inhibition of osteogenic cell phenotype as a function of differentiation time course in vitro. Biomaterials 17:1949–1954

    Article  Google Scholar 

  5. Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT (1997) Prosthetic metals interfere with the functions of human osteoblast cells in vitro. Clin Orthop Relat Res 339:216–226

    Article  Google Scholar 

  6. Mohammed MT, Khan ZA, Siddiquee AN (2012) Titanium and its alloys, the imperative materials for biomedical applications. In: ICRTET, pp 91–95

  7. Yu J, Chu X, Cai Y, Tong P, Yao J (2014) Preparation and characterization of antimicrobial nano hydroxyapatite composites. Mater Sci Eng C 37:54–59

    Article  Google Scholar 

  8. Park JW, Park KB, Suh JY (2007) Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae. Biomaterials 28:3306–3313

    Article  Google Scholar 

  9. Sridhar TM, Arumugam TK, Rajeswari S, Subbaiyan M (1997) Electrochemical behaviour of hydroxyapatite-coated stainless steel implants. J Mater Sci Lett 16:1964–1966

    Article  Google Scholar 

  10. Yamaguchi M, Oishi H, Suketa Y (1987) Stimulatory effect of zinc on bone formation in tissue culture. J Mater Sci Lett 36:4007–4012

    Google Scholar 

  11. Eberle J, Schmidmayer S, Erben RG, Stangassinger M, Roth HP (1999) Skeletal effects of zinc deficiency in growing rats. J Trace Elem Med Biol 13:21–26

    Article  Google Scholar 

  12. Chen D, Waite LC, Pierce WM Jr (1999) In vitro effects of zinc on markers of bone formation. Biol Trace Elem Res 68:225–234

    Article  Google Scholar 

  13. Shibli SMA, Jayalekshmi AC (2008) Development of phosphate inter layered hydroxyapatite coating for stainless steel implants. Appl Surf Sci 254:4103–4110

    Article  Google Scholar 

  14. Herschke L, Rottstegge J, Lieberwirth I, Wegner G (2006) Zinc phosphate as versatile material for potential biomedical applications part 1. J Mater Sci Mater Med 17:81–94

    Article  Google Scholar 

  15. Nriagu JO (1973) Solubility equilibrium constant of α-hopeite. Geochim Cosmochim Acta 37:2357–2361

    Article  Google Scholar 

  16. Uo M, Sjoren G, Sundh A, Watari F, Bergman M, Lerner U (2003) Cytotoxicity and bonding property of dental ceramics. Int J Appl Glass Sci 19:487–492

    Google Scholar 

  17. Attar N, Tam LE, McComb D (2003) Mechanical and physical properties of contemporary dental luting agents. J Prosthet Dent 89:127–134

    Article  Google Scholar 

  18. Horiuchi S, Asaoka K, Tanaka E (2009) Development of a novel cement by conversion of hopeite in set zinc phosphate cement into biocompatible apatite. Biomed Mater Eng 19:121–131

    Google Scholar 

  19. Lin FH, Hsu YS, Lin SH, Sun JS (2002) The effect of Ca/P concentration and temperature of simulated body fluid on the growth of hydroxyapatite coating on alkali-treated 316L stainless steel. Biomaterials 23:4029–4038

    Article  Google Scholar 

  20. Kokubo T, Ito S, Sakka S, Yamamuro T (1986) Formation of a high strength bioactive glass–ceramic in the system MgO–CaO–SiO2–P2O5. J Mater Sci 21:536–540

    Article  Google Scholar 

  21. Kokubo T, Hayashi T, Sakka S, Kitsugi T, Yamamuro T (1987) Bonding between bioactive glasses, glass-ceramics or ceramics in simulated body fluid. yogyo-kyokai-hi 95:785–791

    Article  Google Scholar 

  22. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramics A-W3. J Biomed Mater Res 24:721–734

    Article  Google Scholar 

  23. Kokubo T (1990) Surface chemistry of bioactive glass–ceramics. J Non Cryst Solids 120:138–151

    Article  Google Scholar 

  24. Aza PND, Guitian F, Aza SD (1994) Bioactivity of wollastonite ceramics: in vitro evaluation. Scr Metall Mater 31:1001–1005

    Article  Google Scholar 

  25. Liu DM (1994) Bioactive glass–ceramic: formation, characterization and bioactivity. Mater Chem Phys 36:294–303

    Article  Google Scholar 

  26. De Aza PN, Luklinska ZB, Anseau MR, Guitian F, De Aza S (1999) Bioactivity of pseudowollastonite in human saliva. J Dent 27:107–113

    Article  Google Scholar 

  27. De Aza PN, Luklinska Z (2003) Effect of the glass–ceramic microstructure on its in vitro bioactivity. J Mat Sci Mater Med 14:891–898

    Article  Google Scholar 

  28. De Aza PN, Luklinska ZB, Anseau MR (2005) Bioactivity of diopside ceramic in human parotid saliva. J Biomed Mater Res 73B:54–60

    Article  Google Scholar 

  29. Alemany MI, Velasquez P, de la Casa-Lillo MA, De Aza PN (2005) Effect of materials processing methods on the in vitro bioactivity of wollastonite glass–ceramic materials. J Non Cryst Solids 351:1716–1726

    Article  Google Scholar 

  30. Khan AN, Lu J (2007) Thermal cyclic behavior of air plasma sprayed thermal barrier coatings sprayed on stainless steel substrates. Surf Coat Technol 201:4653–4658

    Article  Google Scholar 

  31. Oskuie AA, Afshar A, Hasannejad H (2010) Effect of current density on DC electrochemical phosphating of stainless steel 316. Surf Coat Technol 205:2302–2306

    Article  Google Scholar 

  32. Valanezhad A, Tsuru K, Maruta M, Kawachi G, Matsuya S, Ishikawa K (2010) Zinc phosphate coating on 316L-type stainless steel using hydrothermal treatment. Surf Coat Technol 205:2538–2541

    Article  Google Scholar 

  33. Foerster CE, Serbena FC, da Silva SLR, Lepienski CM, Siqueira CJM, Ueda M (2007) Mechanical and tribological properties of AISI 304 stainless steel nitrided by glow discharge compared to ion implantation and plasma immersion ion implantation. Nucl Phys B 257:732–736

    Google Scholar 

  34. Tlotleng M, Akinlabi E, Shukla M, Pityana S (2014) Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process. Mater Sci Eng C 43:189–198

    Article  Google Scholar 

  35. Garcia SFJ, Mayor MB, Arias JL, Pou J, Leon B, Perez AM (1997) Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques. J Mater Sci Mater Med 8:861–865

    Article  Google Scholar 

  36. Bao Q, Chen C, Wang D, Ji Q, Lei T (2005) Pulsed laser deposition and its current research status in preparing hydroxyapatite thin films. Appl Surf Sci 252:1538–1544

    Article  Google Scholar 

  37. Bigi A, Bracci B, Cuisinier F, Elkaim R, Fini M, Mayer I, Mihailescu IN, Socol G, Sturba L, Torricelli P (2005) Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials 26:2381–2389

    Article  Google Scholar 

  38. Fernandez PJM, Garcia CMV, Cleries L, Sardin G, Morenza JL (2002) Influence of the interface layer on the adhesion of pulsed laser deposited hydroxyapatite coatings on titanium alloy. Appl Surf Sci 195:31–37

    Article  Google Scholar 

  39. Zeng H, Lacefield WR (2000) XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the effects of various process parameters. Biomaterials 21:23–30

    Article  Google Scholar 

  40. Rajesh P, Muraleedharan CV, Komath M, Varma H (2011) Pulsed laser deposition of hydroxyapatite on titanium substrate with titania interlayer. J Mater Sci Mater Med 22:497–505

    Article  Google Scholar 

  41. Won YJ, Ki H (2013) Fabricating functionally graded films with designed gradient profiles using pulsed laser deposition. J Appl Phys 113:174910-1–174910-9

    Google Scholar 

  42. Tanaskovic D, Jokic B, Socol G, Popescu A, Mihailescu IN, Petrovic R, Janackovic D (2007) Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition. App Surf Sci 254:1279–1282

    Article  Google Scholar 

  43. Rusop M, Uma K, Soga T, Jimbo T (2007) Structural properties of pulsed laser deposited zinc oxide thin films annealed at various temperatures. Surf Eng 23:230–233

    Article  Google Scholar 

  44. Kuppusami P, Raghunathan VS (2006) Status of pulsed laser deposition: challenges and opportunities. Surf Eng 22:81–83

    Article  Google Scholar 

  45. Khandelwal H, Singh G, Agrawal K, Prakash S, Agarwal RD (2013) Characterization of hydroxyapatite coating by pulse laser deposition technique on stainless steel 316 L by varying laser energy. Appl Surf Sci 265:30–35

    Article  Google Scholar 

  46. Zeng H, Lacefield WR, Mirov S (2000) Structural and morphological study of pulsed laser deposited calcium phosphate bioceramic coatings: Influence of deposition conditions, laser parameters, and target properties. J Biomed Mater Res 50:248–258

    Article  Google Scholar 

  47. Das A, Shukla M (2015) Surface morphology and adhesion studies of pulsed laser deposited hydroxyapatite thin film coatings on SS254 stainless steel. In: 24th DAE BRNS national laser symposium (NLS-24)

  48. Das A, Shukla M (2016) Surface morphology, bioactivity, and antibacterial studies of pulsed laser deposited hydroxyapatite coatings on stainless steel 254 for orthopedic implant applications. J Mater Des Appl. https://doi.org/10.1177/1464420716663029

    Article  Google Scholar 

  49. Constantino ME, Campillo B, Staia MH, Serna S, Juarez-Islas J, Sudarshan TS (2006) Pulsed electrode deposition of super hard coatings on steel substrates: microstructural and chemical study. Surf Eng 22:212–218

    Article  Google Scholar 

  50. Wolkowicz R (2013) Fluorescence-activated cell sorting. In: Maloy S (ed) Brenner’s encyclopedia of genetics, 2nd edn. Academic Press, London, pp 80–82

    Chapter  Google Scholar 

  51. Saritha K, Rajesh A, Manjulatha K, Setty OH, Yenugu S (2015) Mechanism of antibacterial action of the alcoholic extracts of Hemidesmus indicus (L.) R. Br. exSchult, Leucas aspera (Wild.), Plumbago zeylanica L., and Tridax procumbens (L.) R. Br. ex Schult. Front Microbiol 6:577

    Article  Google Scholar 

  52. Das A, Shukla M (2017) Surface morphology and in vitro bioactivity of biocompatible hydroxyapatite coatings on medical grade S31254 steel by RF magnetron sputtering deposition. Trans IMF 95:276–281

    Article  Google Scholar 

  53. Das A, Shukla M (2017) Hydroxyapatite coatings on high nitrogen stainless steel by laser rapid manufacturing. JOM 69:2292–2296

    Article  Google Scholar 

  54. Yi W, Sun X, Niu D, Hu X (2014) In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid. J Asian Ceram Soc 2:210–214

    Article  Google Scholar 

  55. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  Google Scholar 

  56. Kassing R, Petkov P, Kulisch W, Popov C (2006) Functional properties of nanostructured materials, vol 223. Series II: mathematics, physics and chemistry. Springer, Berlin, pp 183–196

    Google Scholar 

  57. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine. Springer, Berlin

    Book  Google Scholar 

  58. Dinda GP, Shin J, Mazumder J (2009) Pulse laser deposition of hydroxyapatite thin coatings on Ti–6Al–4V: effect of heat treatment on structure and properties. Acta Biomater 5:1821–1830

    Article  Google Scholar 

  59. Rad AT, Hashjin MS, Osman NAA, Faghihi S (2014) Improved bio-physical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage. Ceram Int 40:12681–12691

    Article  Google Scholar 

  60. Roy M, Balla VK, Bandyopadhyay A, Bose S (2010) Comparison of tantalum and hydroxyapatite coatings on titanium for applications in load bearing implants. Adv Eng Mater 12:B637–B641

    Article  Google Scholar 

  61. Bandyopadhyay A, Balla VK, Roy M, Bose S (2011) Laser surface modification of metallic biomaterials. JOM 63:94–99

    Article  Google Scholar 

  62. Balla VK, Bhat A, Bose S, Bandyopadhyay A (2012) Laser processed TiN reinforced Ti6Al4V composite coatings. J Mech Behav Biomed Mater 6C:9

    Article  Google Scholar 

  63. Zhang X, Xiao G, Jiao Y, Zhao X, Lu Y (2014) Facile preparation of hopeite coating on stainless steel by chemical conversion method. Surf Coat Technol 240:361–364

    Article  Google Scholar 

  64. Driver M (2012) Coatings for biomedical applications. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  65. Blind O, Klein LH, Dailey B, Jordan L (2005) Characterization of hydroxyapatite films obtained by pulsed-laser deposition on Ti and Ti–6AL–4V substrates. Dent Mater 21:1017–1024

    Article  Google Scholar 

  66. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P (2000) Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 49:155–166

    Article  Google Scholar 

  67. Zhang X, Xiao G, Jiang C, Liu B, Li N, Zhu R, Lu Y (2015) Influence of process parameters on microstructure and corrosion properties of hopeite coating on stainless steel. Corros Sci 94:428–437

    Article  Google Scholar 

  68. Ge X, Leng Y, Bao C, Xu SL, Wang R, Ren F (2010) Antibacterial coatings of fluoridated hydroxyapatite for percutaneous implants. J Biomed Mater Res A 95:588–599

    Article  Google Scholar 

  69. Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31:706–713

    Article  Google Scholar 

  70. Man HC, Chiu KY, Cheng FT, Wong KH (2009) Adhesion study of pulsed laser deposited hydroxyapatite coating on laser surface nitrided titanium. Thin Solid Films 517:5496–5501

    Article  Google Scholar 

  71. Neo M, Kotani S, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T, Bando YA (1992) A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone. J Biomed Mater Res 26:1419–1432

    Article  Google Scholar 

  72. Gu YW, Khor KA, Cheang P (2004) Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials 25:4127–4134

    Article  Google Scholar 

  73. Jones FH (2001) Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf Sci Rep 42:75–205

    Article  Google Scholar 

  74. Wu W, Zhuang H, Nancollas GH (1997) Heterogeneous nucleation of calcium phosphates on solid surfaces in aqueous solution. J Biomed Mater Res 35:93–99

    Article  Google Scholar 

  75. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728

    Article  Google Scholar 

  76. Hench LL, Day DE, Holand W, Rheinberger VM (2010) Glass and medicine. Int J Appl Glass Sci 1:104–117

    Article  Google Scholar 

  77. Chavan PN, Bahir MM, Mene RU, Mahabole MP, Khairnar RS (2010) Study of nanobiomaterial hydroxyapatite in simulated body fluid: formation and growth of apatite. Mater Sci Eng B 168:224–230

    Article  Google Scholar 

  78. Wang YX, Robertson JL, Spillman WB, Claus RO (2004) Effects of the chemical structure and the surface properties of polymeric biomaterials and their biocompatibility. Pharm Res 21:1362–1373

    Article  Google Scholar 

  79. Wang J, Pan CJ, Huang N, Sun H, Yang P, Leng XY, Chen JY, Wan GJ, Chu PK (2005) Surface characterization and blood compatibility of poly(ethylene terephthalate) modified by plasma surface grafting. Surf Coat Technol 196:307–311

    Article  Google Scholar 

  80. Higuchi A, Shirano K, Harashima M, Yoon BO, Hara M, Hattori M, Imamura K (2002) Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 23:2659–2666

    Article  Google Scholar 

  81. MacDonald DE, Deo N, Markovic B, Stranick M, Somasundaran P (2002) Adsorption and dissolution behavior of human plasma fibronectin on thermally and chemically modified titanium dioxide particles. Biomaterials 23:1269–1279

    Article  Google Scholar 

  82. Hess H, Vogel V (2001) Molecular shuttles based on motor proteins: active transport in synthetic environments. J Biotechnol 82:67–85

    Google Scholar 

  83. Prakash C, Kansal HK, Pabla BS, Puri S (2015) Processing and characterization of novel biomimetic nanoporous bioceramic surface on β-Ti implant by powder mixed electric discharge machining. J Mater Eng Perform 24:3622–3633

    Article  Google Scholar 

Download references

Acknowledgements

The use of synthesis, testing and characterization facilities of the Centre for Interdisciplinary Research (CIR), Centre for Medical Diagnostic and Research (CMDR), Biotechnology and Applied Mechanics Departments, MNNIT, Allahabad are gratefully acknowledged. The authors also thank Dr Naresh Kumar, Mr. Aashish Jha, Mr. Alok Kumar Yadav for their valuable contribution in the successful conduction of the experiments. The authors would like to thank the Ministry of Human Resource Development, Government of India and the University of Johannesburg, South Africa, for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Das.

Additional information

Technical Editor: Márcio Bacci da Silva, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Shukla, M. Pulsed laser-deposited hopeite coatings on titanium alloy for orthopaedic implant applications: surface characterization, antibacterial and bioactivity studies. J Braz. Soc. Mech. Sci. Eng. 41, 214 (2019). https://doi.org/10.1007/s40430-019-1722-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-019-1722-y

Keywords

Navigation