Skip to main content
Log in

Using Vocally Inspired Mechanical Conditioning to Enhance the Synthesis of a Cell-derived Biomaterial

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The collection of cell-derived extracellular matrix (ECM) to form implantable biomaterials has therapeutic potential. However, a significant challenge to the creation of these biomaterials is the ability to produce an adequate quantity of ECM from cells in culture. Mechanical stimulation has long been viewed as a practical means to enhance cellular matrix production. In this study we explored the influence of vocally inspired mechanical stimulation, a unique combination of high frequency vibration and low frequency strain, on the production of ECM. Using a custom fabricated vocal bioreactor, tracheal fibroblast seeded sacrificial foams were treated for 3 weeks using either isolated cyclic strain, combined cyclic strain and vibration (dual mode), or static conditioning. When compared to static controls, ECM production was significantly increased for samples conditioned with either cyclic strain or dual mode stimulation. The quantity of ECM harvested from sacrificial foams increased from 25 ± 1 mg for statically conditioned control foams, to 34 ± 3 and 52 ± 10 mg for cyclic strain and dual mode conditioned samples respectively. Furthermore, mechanical conditioning significantly increased the elastic modulus of ECM biomaterials collected from sacrificial foams. Static control modulus increased from 40 ± 2 to 63 ± 7 kPa and 92 ± 7 kPa following isolated cyclic strain and dual mode conditioning, respectively. These results indicate that cyclic strain conditioning can be used to accelerate the production of ECM by human tracheal cells during growth in culture, and that the addition of high frequency vibration to the conditioning program further enhances ECM production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Badylak, S. F., D. O. Freytes, and T. W. Gilbert. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5:1–13, 2009.

    Article  PubMed  CAS  Google Scholar 

  2. Cha, J. M., S. N. Park, S. H. Noh, and H. Suh. Time-dependent modulation of alignment and differentiation of smooth muscle cells seeded on a porous substrate undergoing cyclic mechanical strain. Artif. Organs 30:250–258, 2006.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, Q., W. Li, Z. Quan, and B. E. Sumpio. Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase. J. Vasc. Surg. 37:660–668, 2003.

    Article  PubMed  Google Scholar 

  4. Chiquet, M., A. S. Renedo, F. Huber, and M. Fluck. How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 22:73–80, 2003.

    Article  PubMed  CAS  Google Scholar 

  5. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    PubMed  CAS  Google Scholar 

  6. Eifler, R. L., E. R. Blough, J. M. Dehlin, and T. L. Haut Donahue. Oscillatory fluid flow regulates glycosaminoglycan production via an intracellular calcium pathway in meniscal cells. J. Orthop. Res. 24:375–384, 2006.

  7. Farndale, R. W., C. A. Sayers, and A. J. Barrett. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect. Tissue Res. 9:247–248, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Fitch, J. L., and A. Holbrook. Modal fundamental frequency of young adults. Arch. Otolaryngol. 92:379–382, 1970.

    Article  PubMed  CAS  Google Scholar 

  9. Fonck, E., G. G. Feigl, J. Fasel, D. Sage, M. Unser, D. A. Rufenacht, and N. Stergiopulos. Effect of aging on elastin functionality in human cerebral arteries. Stroke 40:2552–2556, 2009.

    Article  PubMed  CAS  Google Scholar 

  10. Gaston, J., B. Quinchia Rios, R. Bartlett, C. Berchtold, and S. L. Thibeault. The response of vocal fold fibroblasts and mesenchymal stromal cells to vibration. PLoS ONE. 7:e30965, 2012.

  11. Gupta, V., J. A. Werdenberg, T. L. Blevins, and K. J. Grande-Allen. Synthesis of glycosaminoglycans in differently loaded regions of collagen gels seeded with valvular interstitial cells. Tissue Eng. 13:41–49, 2007.

    Article  PubMed  CAS  Google Scholar 

  12. Jeong, S. I., J. H. Kwon, J. I. Lim, S. W. Cho, Y. Jung, W. J. Sung, S. H. Kim, Y. H. Kim, Y. M. Lee, B. S. Kim, C. Y. Choi, and S. J. Kim. Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 26:1405–1411, 2005.

    Article  PubMed  CAS  Google Scholar 

  13. Johns, M. M. Update on the etiology, diagnosis, and treatment of vocal fold nodules, polyps, and cysts. Curr. Opin. Otolaryngol. Head Neck Surg. 11:456–461, 2003.

    Article  PubMed  Google Scholar 

  14. Juncosa-Melvin, N., K. S. Matlin, R. W. Holdcraft, V. S. Nirmalanandhan, and D. L. Butler. Mechanical stimulation increases collagen type I and collagen type III gene expression of stem cell-collagen sponge constructs for patellar tendon repair. Tissue Eng. 13:1219–1226, 2007.

    Article  PubMed  CAS  Google Scholar 

  15. Kasra, M., V. Goel, J. Martin, S. T. Wang, W. Choi, and J. Buckwalter. Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells. J. Orthop. Res. 21:597–603, 2003.

    Article  PubMed  Google Scholar 

  16. Kutty, J. K., and K. Webb. Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts. J. Tissue Eng. Regen. Med. 4:62–72, 2010.

    PubMed  CAS  Google Scholar 

  17. Lee, A. A., T. Delhaas, A. D. McCulloch, and F. J. Villarreal. Differential responses of adult cardiac fibroblasts to in vitro biaxial strain patterns. J. Mol. Cell. Cardiol. 31:1833–1843, 1999.

    Article  PubMed  CAS  Google Scholar 

  18. Lu, H., T. Hoshiba, N. Kawazoe, and G. Chen. Autologous extracellular matrix scaffolds for tissue engineering. Biomaterials 32:2489–2499, 2011.

    Article  PubMed  CAS  Google Scholar 

  19. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. USA 94:849–854, 1997.

    Article  PubMed  CAS  Google Scholar 

  20. McAllister, T. N., M. Maruszewski, S. A. Garrido, W. Wystrychowski, N. Dusserre, A. Marini, K. Zagalski, A. Fiorillo, H. Avila, X. Manglano, J. Antonelli, A. Kocher, M. Zembala, L. Cierpka, L. M. de la Fuente, and N. L’Heureux. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446, 2009.

    Article  PubMed  Google Scholar 

  21. Milstein, C. F., L. M. Akst, M. D. Hicks, T. I. Abelson, and M. Strome. Long-term effects of micronized Alloderm injection for unilateral vocal fold paralysis. Laryngoscope 115:1691–1696, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Mulder, M. M., R. W. Hitchcock, and P. A. Tresco. Skeletal myogenesis on elastomeric substrates: implications for tissue engineering. J. Biomater. Sci. Polym. Ed. 9:731–748, 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Ng, C. P., and M. A. Swartz. Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model. Am. J. Physiol. Heart Circ. Physiol. 284:H1771–H1777, 2003.

    PubMed  CAS  Google Scholar 

  24. Nirmalanandhan, V. S., M. Rao, J. T. Shearn, N. Juncosa-Melvin, C. Gooch, and D. L. Butler. Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct. J. Biomech. 41:822–828, 2008.

    Article  PubMed  Google Scholar 

  25. Nirmalanandhan, V. S., J. T. Shearn, N. Juncosa-Melvin, M. Rao, C. Gooch, A. Jain, G. Bradica, and D. L. Butler. Improving linear stiffness of the cell-seeded collagen sponge constructs by varying the components of the mechanical stimulus. Tissue Eng. Part A 14:1883–1891, 2008.

    Article  PubMed  CAS  Google Scholar 

  26. Okano, T., N. Yamada, M. Okuhara, H. Sakai, and Y. Sakurai. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 16:297–303, 1995.

    Article  PubMed  CAS  Google Scholar 

  27. Perazzo P. S., C. Duprat Ade, and C. L. Lancellotti. Histological behavior of the vocal fold after hyaluronic acid injection. J. Voice. 23:95–98, 2009.

    Google Scholar 

  28. Screen, H. R., J. C. Shelton, D. L. Bader, and D. A. Lee. Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles. Biochem. Biophys. Res. Commun. 336:424–429, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Song, L., Q. Zhou, P. Duan, P. Guo, D. Li, Y. Xu, S. Li, F. Luo, and Z. Zhang. Successful development of small diameter tissue-engineering vascular vessels by our novel integrally designed pulsatile perfusion-based bioreactor. PLoS ONE 7:e42569, 2012.

    Article  PubMed  CAS  Google Scholar 

  30. Syedain, Z. H., L. A. Meier, J. W. Bjork, A. Lee, and R. T. Tranquillo. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow-stretch bioreactor with noninvasive strength monitoring. Biomaterials 32:714–722, 2011.

    Article  PubMed  CAS  Google Scholar 

  31. Tian, J., M. J. Pecaut, J. M. Slater, and D. S. Gridley. Spaceflight modulates expression of extracellular matrix, adhesion, and profibrotic molecules in mouse lung. J. Appl. Physiol. 108:162–171, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Titze, I. R., K. Broadhead, P. Tresco, and S. Gray. Strain distribution in an elastic substrate vibrated in a bioreactor for vocal fold tissue engineering. J. Biomech. 38:2406–2414, 2005.

    Article  PubMed  CAS  Google Scholar 

  33. Titze, I. R., R. W. Hitchcock, K. Broadhead, K. Webb, W. Li, S. D. Gray, and P. A. Tresco. Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J. Biomech. 37:1521–1529, 2004.

    Article  PubMed  Google Scholar 

  34. Titze, I. R., J. J. Jiang, and E. Lin. The dynamics of length change in canine vocal folds. J. Voice 11:267–276, 1997.

    Article  PubMed  CAS  Google Scholar 

  35. Webb, K., R. W. Hitchcock, R. M. Smeal, W. Li, S. D. Gray, and P. A. Tresco. Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J. Biomech. 39:1136–1144, 2006.

    Article  PubMed  Google Scholar 

  36. Webb, K., W. Li, R. W. Hitchcock, R. M. Smeal, S. D. Gray, and P. A. Tresco. Comparison of human fibroblast ECM-related gene expression on elastic three-dimensional substrates relative to two-dimensional films of the same material. Biomaterials 24:4681–4690, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Wolchok, J. C., C. Brokopp, C. J. Underwood, and P. A. Tresco. The effect of bioreactor induced vibrational stimulation on extracellular matrix production from human derived fibroblasts. Biomaterials 30:327–335, 2009.

    Article  PubMed  CAS  Google Scholar 

  38. Wolchok, J. C., and P. A. Tresco. The isolation of cell derived extracellular matrix constructs using sacrificial open-cell foams. Biomaterials 31(36):9595–9603, 2010.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Robert Hitchcock, Ingo Titze, and Kelly Broadhead for their contributions to the development of the vocal bioreactor which made this work possible.

Conflict of Interest

The authors wish to confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Wolchok.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolchok, J.C., Tresco, P.A. Using Vocally Inspired Mechanical Conditioning to Enhance the Synthesis of a Cell-derived Biomaterial. Ann Biomed Eng 41, 2358–2366 (2013). https://doi.org/10.1007/s10439-013-0845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0845-z

Keywords

Navigation