Skip to main content
Log in

Microfluidic System for Facilitated Quantification of Nanoparticle Accumulation to Cells Under Laminar Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The identification of novel, synthetic targeting ligands to endothelial receptors has led to the rapid development of targeted nanoparticles for drug, gene and imaging probe delivery. Central to development and optimization are effective models for assessing particle binding in vitro. Here, we developed a simple and cost effective method to quantitatively assess nanoparticle accumulation under physiologically-relevant laminar flow. We designed reversibly vacuum-sealed PDMS microfluidic chambers compatible with 35 mm petri dishes, which deliver uniform or gradient shear stress. These chambers have sufficient surface area for facile cell collection for particle accumulation quantitation through FACS. We tested this model by synthesizing and flowing liposomes coated with APN (K D ~ 300 μM) and VCAM-1-targeting (K D ~ 30 μM) peptides over HUVEC. Particle binding significantly increased with ligand concentration (up to 6 mol%) and decreased with excess PEG. While the accumulation of particles with the lower affinity ligand decreased with shear, accumulation of those with the higher affinity ligand was highest in a low shear environment (2.4 dyne/cm2), as compared with greater shear or the absence of shear. We describe here a robust flow chamber model that is applied to optimize the properties of 100 nm liposomes targeted to inflamed endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chang, K. C., and D. A. Hammer. The forward rate of binding of surface-tethered reactants: effect of relative motion between two surfaces. Biophys. J. 76:1280–1292, 1999.

    Article  PubMed  CAS  Google Scholar 

  2. Charoenphol, P., R. B. Huang, and O. Eniola-Adefeso. Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials 31:1392–1402, 2010.

    Article  PubMed  CAS  Google Scholar 

  3. Chen, A. N., and T. R. Pan. Three-dimensional fit-to-flow microfluidic assembly. Biomicrofluidics 5:46505–46509, 2011.

    Article  PubMed  Google Scholar 

  4. Evans, E., and K. Kinoshita. Using force to probe single-molecule receptor-cytoskeletal anchoring beneath the surface of a living cell. Methods Cell Biol. 83:373–396, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Farokhzad, O. C., A. Khademhosseini, S. Jon, A. Hermmann, J. Cheng, C. Chin, A. Kiselyuk, B. Teply, G. Eng, and R. Langer. Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal. Chem. 77:5453–5459, 2005.

    Article  PubMed  CAS  Google Scholar 

  6. Harris, S. S., and T. D. Giorgio. Convective flow increases lipoplex delivery rate to in vitro cellular monolayers. Gene Ther. 12:512–520, 2005.

    Article  PubMed  CAS  Google Scholar 

  7. Jeong, J. H., M. Lee, W. J. Kim, J. W. Yockman, T. G. Park, Y. H. Kim, and S. W. Kim. Anti-GAD antibody targeted non-viral gene delivery to islet beta cells. J. Controlled Release 107:562–570, 2005.

    Article  CAS  Google Scholar 

  8. Kelly, K. A., M. Nahrendorf, A. M. Yu, F. Reynolds, and R. Weissleder. In vivo phage display selection yields atherosclerotic plaque targeted peptides for imaging. Mol. Imaging Biol. 8:201–207, 2006.

    Article  PubMed  Google Scholar 

  9. Klibanov, A. L., K. Maruyama, V. P. Torchilin, and L. Huang. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235–237, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Korn, C. B., and U. S. Schwarz. Mean first passage times for bond formation for a Brownian particle in linear shear flow above a wall. J. Chem. Phys. 126:095103, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Kuo, S. C., and D. A. Lauffenburger. Relationship between receptor/ligand binding affinity and adhesion strength. Biophys. J. 65:2191–2200, 1993.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, S. Y., M. Ferrari, and P. Decuzzi. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology 20:495101, 2009.

    Article  PubMed  Google Scholar 

  13. Matsumura, Y., and H. Maeda. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 46:6387–6392, 1986.

    PubMed  CAS  Google Scholar 

  14. Nahrendorf, M., F. A. Jaffer, K. A. Kelly, D. E. Sosnovik, E. Aikawa, P. Libby, and R. Weissleder. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511, 2006.

    Article  PubMed  CAS  Google Scholar 

  15. Nahrendorf, M., E. Keliher, P. Panizzi, H. Zhang, S. Hembrador, J. L. Figueiredo, E. Aikawa, K. Kelly, P. Libby, and R. Weissleder. 18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. JACC Cardiovasc. Imaging 2:1213–1222, 2009.

    Article  PubMed  Google Scholar 

  16. Papahadjopoulos, D., T. M. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. K. Huang, K. D. Lee, M. C. Woodle, D. D. Lasic, C. Redemann, and F. J. Martin. Sterically stabilized liposomes—improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl Acad. Sci. U.S.A. 88:11460–11464, 1991.

    Article  PubMed  CAS  Google Scholar 

  17. Pasqualini, R., E. Koivunen, R. Kain, J. Lahdenranta, M. Sakamoto, A. Stryhn, R. A. Ashmun, L. H. Shapiro, W. Arap, and E. Ruoslahti. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60:722–727, 2000.

    PubMed  CAS  Google Scholar 

  18. Plesniak, L. A., B. Salzameda, H. Hinderberger, E. Regan, J. Kahn, S. A. Mills, P. Teriete, Y. Yao, P. Jennings, F. Marassi, and J. A. Adams. Structure and activity of CPNGRC: a modified CD13/APN peptidic homing motif. Chem. Biol. Drug Des. 75:551–562, 2010.

    Article  PubMed  CAS  Google Scholar 

  19. Prabhakarpandian, B., Y. Wang, A. Rea-Ramsey, S. Sundaram, M. F. Kiani, and K. Pant. Bifurcations: focal points of particle adhesion in microvascular networks. Microcirculation 18:380–389, 2011.

    Article  PubMed  CAS  Google Scholar 

  20. Ruoslahti, E. Vascular zip codes in angiogenesis and metastasis. Biochem. Soc. Trans. 32:397–402, 2004.

    Article  PubMed  CAS  Google Scholar 

  21. Schaff, U. Y., M. M. Xing, K. K. Lin, N. Pan, N. L. Jeon, and S. I. Simon. Vascular mimetics based on microfluidics for imaging the leukocyte–endothelial inflammatory response. Lab Chip 7:448–456, 2007.

    Article  PubMed  CAS  Google Scholar 

  22. Smith, M. L., M. J. Smith, M. B. Lawrence, and K. Ley. Viscosity-independent velocity of neutrophils rolling on p-selectin in vitro or in vivo. Microcirculation 9:523–536, 2002.

    PubMed  CAS  Google Scholar 

  23. Tsou, J. K., R. M. Gower, H. J. Ting, U. Y. Schaff, M. F. Insana, A. G. Passerini, and S. I. Simon. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 15:311–323, 2008.

    Article  PubMed  CAS  Google Scholar 

  24. Usami, S., H. H. Chen, Y. Zhao, S. Chien, and R. Skalak. Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21:77–83, 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Wattenbarger, M. R., D. J. Graves, and D. A. Lauffenburger. Specific adhesion of glycophorin liposomes to a lectin surface in shear flow. Biophys. J. 57:765–777, 1990.

    Article  PubMed  CAS  Google Scholar 

  26. Xia, Y. N., and G. M. Whitesides. Soft lithography. Annu. Rev. Mater. Sci. 28:153–184, 1998.

    Article  CAS  Google Scholar 

  27. Zhang, H., J. Kusunose, A. Kheirolomoom, J. W. Seo, J. Qi, K. D. Watson, H. A. Lindfors, E. Ruoslahti, J. L. Sutcliffe, and K. W. Ferrara. Dynamic imaging of arginine-rich heart-targeted vehicles in a mouse model. Biomaterials 29:1976–1988, 2008.

    Article  PubMed  CAS  Google Scholar 

  28. Zhao, S., A. Chen, A. Revzin, and T. Pan. Stereomask lithography (SML): a universal multi-object micro-patterning technique for biological applications. Lab Chip 11:224–230, 2011.

    Article  PubMed  CAS  Google Scholar 

  29. Zhao, S., H. Cong, and T. Pan. Direct projection on dry-film photoresist (DP(2)): do-it-yourself three-dimensional polymer microfluidics. Lab Chip 9:1128–1132, 2009.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Shengping Qin for the CFD modeling used for preliminary analysis and Arnold Chan for the fabrication of prototype PDMS molds. This work was supported by the Bioengineering research partnership NIHR01CA103828, NIHT32EB003827 and National Heart, Lung, and Blood Institute Contract no. HHSN268201000043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiro Kusunose.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 691 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kusunose, J., Zhang, H., Gagnon, M.K.J. et al. Microfluidic System for Facilitated Quantification of Nanoparticle Accumulation to Cells Under Laminar Flow. Ann Biomed Eng 41, 89–99 (2013). https://doi.org/10.1007/s10439-012-0634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0634-0

Keywords

Navigation