Skip to main content
Log in

Finite Element Strategies to Satisfy Clinical and Engineering Requirements in the Field of Percutaneous Valves

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Finite element (FE) modelling can be a very resourceful tool in the field of cardiovascular devices. To ensure result reliability, FE models must be validated experimentally against physical data. Their clinical application (e.g., patients’ suitability, morphological evaluation) also requires fast simulation process and access to results, while engineering applications need highly accurate results. This study shows how FE models with different mesh discretisations can suit clinical and engineering requirements for studying a novel device designed for percutaneous valve implantation. Following sensitivity analysis and experimental characterisation of the materials, the stent-graft was first studied in a simplified geometry (i.e., compliant cylinder) and validated against in vitro data, and then in a patient-specific implantation site (i.e., distensible right ventricular outflow tract). Different meshing strategies using solid, beam and shell elements were tested. Results showed excellent agreement between computational and experimental data in the simplified implantation site. Beam elements were found to be convenient for clinical applications, providing reliable results in less than one hour in a patient-specific anatomical model. Solid elements remain the FE choice for engineering applications, albeit more computationally expensive (>100 times). This work also showed how information on device mechanical behaviour differs when acquired in a simplified model as opposed to a patient-specific model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Auricchio, F., and R. L. Taylor. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behaviour. Comput. Method. Appl. Mech. 143(1–2):175–194, 1997.

    Article  Google Scholar 

  2. Babuska, I., and J. T. Oden. Verification and validation in computational engineering and science: basic concepts. Comput. Method. Appl. Methods 193:4057–4066, 2004.

    Article  Google Scholar 

  3. Biglino, G., S. Schievano, V. Muthurangu, and A. M. Taylor. Cardiovascular modelling. In: Clinical Cardiac MRI-II, edited by J. Bogaart, S. Dymarowski, V. Muthurangu, and A. M. Taylor. Berlin: Springer-Verlag, 2012, pp. 669–694.

  4. Biglino, G., C. Capelli, A. Binazzi, R. Reggiani, D. Cosentino, F. Migliavacca, P. Bonhoeffer, A. M. Taylor, and S. Schievano. Virtual and real bench testing: case study of a new percutaneous valve device. Eurointervention 8:120–128, 2012.

    Article  PubMed  Google Scholar 

  5. Biglino, G., P. Verschueren, R. Zegels, A. M. Taylor, and S. Schievano. Quantification of TangoPlus FullCure® 930 compliance for printing patient-specific vascular models. ASAIO J. 57:74, 2011.

    Google Scholar 

  6. Bonhoeffer, P. Are animal experiments the crux for decision making in whether new heart valves can be brought to clinical practice? EuroIntervention. 5:643–645, 2010.

    Article  PubMed  Google Scholar 

  7. Bonhoeffer, P., Y. Boudjemline, Z. Saliba, J. Merckx, Y. Aggoun, D. Bonnet, P. Acar, J. Le Bidois, D. Sidi, and J. Kachaner. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356:1403–1405, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Bonhoeffer, P., R. Huynh, M. House, N. Douk, M. Kopcak, A. Hill, and N. Rafiee. Transcatheter pulmonic valve replacement in sheep using a grafted self-expanding stent with tissue valve. Circulation 118:S812, 2008.

    Google Scholar 

  9. Capelli, C., A. M. Taylor, F. Migliavacca, P. Bonhoeffer, and S. Schievano. Patient-specific reconstructed anatomies and computer simulations are fundamental for selecting medical device treatment: application to a new percutaneous pulmonary valve. Philos. Transact. A Math. Phys. Eng. Sci. 368:3027–3038, 2010.

    Article  PubMed  Google Scholar 

  10. Castelain, V., P. Hervé, Y. Lecarpentier, P. Duroux, G. Simonneau, and D. Chemla. Pulmonary artery pulse pressure and wave reflection in chronic pulmonary thromboembolism and primary pulmonary hypertension. J. Am. Coll. Cardiol. 37(4):1085–1092, 2001.

    Google Scholar 

  11. Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26(10):2550–2559, 2005.

    PubMed  Google Scholar 

  12. Cebral, J. R., P. J. Yim, R. Löhner, O. Soto, and P. L. Choyke. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Acad. Radiol. 9(11):1286–1299, 2002.

    Article  PubMed  Google Scholar 

  13. Condado, J. A., and M. Vélez-Gimón. Catheter-based approach to mitral regurgitation. J. Interv. Cardiol. 16(6):523–534, 2003.

    Article  PubMed  Google Scholar 

  14. Cribier, A., H. Eltchaninoff, A. Bash, N. Borenstein, C. Tron, F. Bauer, G. Derumeaux, F. Anselme, F. Laborde, and M. B. Leon. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis—first human case description. Circulation 106:3006–3008, 2002.

    Article  PubMed  Google Scholar 

  15. EN ISO 5840-03. Cardiovascular implants. Cardiac valve prostheses. Part 3: Heart valve substitutes implanted by minimally invasive techniques, 2010.

  16. Gan, C. T. J., J. W. Lankhaar, N. Westerhof, J. T. Marcus, A. Becker, J. W. R. Twisk, A. Boonstra, P. E. Postmus, and A. Vonk-Noordergaaf. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest. 132:1906–1912, 2007.

    Article  PubMed  Google Scholar 

  17. Grujicic, M., B. Pandurangan, A. Arakere, and J. S. Snipes. Fatigue-life computational analysis for the self-expanding endovascular nitinol stents. J. Mater. Eng. Perform. 21(1):1–13, 2012.

    Article  Google Scholar 

  18. Guidance for industry and FDA staff. Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems. Document issued on April 18, 2010.

  19. Hall, G. J., and E. P. Kasper. Comparison of element technologies for modeling stent expansion. J. Biomech. Eng-T. ASME. 128:751–756, 2006.

    Article  Google Scholar 

  20. Koo, B. K., A. Erglis, J. H. Doh, D. V. Daniels, S. Jegere, H. S. Kim, A. Dunning, T. Defrance, A. Lansky, J. Leipsic, and J. K. Min. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms results from the prospective multicenter discover-flow (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J. Am. Coll. Cardiol. 58(19):1989–1997, 2011.

    Article  PubMed  Google Scholar 

  21. Lauten, A., M. Ferrari, K. Hekmat, R. Pfeifer, G. Dannberg, A. Ragoschke-Schumm, and H. R. Figulla. Heterotopic transcatheter tricuspid valve implantation: first-in-man application of a novel approach to tricuspid regurgitation. Eur. Heart. J. 32(10):1207–1213, 2011.

    Article  PubMed  Google Scholar 

  22. Migwi, C. M., M. I. Darby, G. H. Wostenholm, B. Yates, R. Duffy, and M. Moss. A method of determining the shear modulus and Poisson’s ratio of polymer materials. J. Mater. Sci. 29:3430–3432, 1994.

    Article  CAS  Google Scholar 

  23. Morlacchi, S., C. Chiastra, D. Gastaldi, G. Pennati, G. Dubini, and F. Migliavacca. Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery. J. Biomech. Eng. 133(12):121010, 2011.

    Article  PubMed  Google Scholar 

  24. Morlacchi, S., B. Keller, P. Arcangeli, M. Balzan, F. Migliavacca, G. Dubini, J. Gunn, N. Arnold, A. Narracott, D. Evans, and P. Lawford. Hemodynamics and in-stent restenosis: micro-CT images, histology, and computer simulations. Ann. Biomed. Eng. 39(10):2615–2626, 2011.

    Article  PubMed  Google Scholar 

  25. Oberkampf, W. L., T. G. Trucano, and C. Hirsch. Verification validation and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57:345–384, 2004.

    Google Scholar 

  26. Pelton, A. R., V. Schroeder, M. R. Mitchell, X. Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of nitinol stents. J Mech. Behav. Biomed. Mater. 1(2):153–164, 2008.

    Article  PubMed  CAS  Google Scholar 

  27. Rebelo, N., X. Y. Gong, A. Hall, A. R. Pelton, and W. Duerig. Finite element analysis on the cyclic properties of superelastic nitinol. Proceedings of the International Conference on Shape Memory and Superelastic Technologies, pp. 157–163, 2006.

  28. Schievano, S., F. Migliavacca, L. Coats, S. Khambadkone, M. Carminati, N. Wilson, J. E. Deanfield, P. Bonhoeffer, and A. M. Taylor. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 242:490–497, 2007.

    Article  PubMed  Google Scholar 

  29. Schievano, S., A. M. Taylor, C. Capelli, L. Coats, F. Walker, P. Lurz, J. Nordmeyer, S. Wright, S. Khambadkone, V. Tsang, M. Carminati, and P. Bonhoeffer. First-in-man implantation of a novel percutaneous valve: A new approach to medical device development. Eurointervention. 5:745–750, 2010.

    Article  PubMed  Google Scholar 

  30. Schievano, S., A. M. Taylor, C. Capelli, P. Lurz, J. Nordmeyer, F. Migliavacca, and P. Bonhoeffer. Patient specific finite element analysis results in more accurate prediction of stent fractures: application to percutaneous pulmonary valve implantation. J. Biomech. 43(4):687–693, 2010.

    Article  PubMed  Google Scholar 

  31. Schoenhagen, P., A. Hill, T. Kelley, Z. Popovic, and S. S. Halliburton. In vivo imaging and computational analysis of the aortic root. Application in clinical research and design of transcatheter aortic valve systems. J. Cardiovasc. Transl. Res. 4(4):459–469, 2011.

    Article  PubMed  Google Scholar 

  32. Simulia Abaqus analysis user’s manual, v. 6.10-EF Dassault Systèmes, Vélizy-Villacoublay, France, vol. V:31.4 (2010).

  33. Smith, N., A. de Vecchi, M. McCormick, D. Nordsletten, O. Camara, A. F. Frangi, H. Delingette, M. Sermesant, J. Relan, N. Ayache, N. W. Krueger, W. H. W. Schulze, R. Hose, I. Valverde, P. Beerbaum, C. Staicu, M. Siebes, J. Spaan, P. Hunter, J. Weese, H. Lehmann, D. Chapelle, and R. Rezavi. EuHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus. 1:349–364, 2011.

    Article  PubMed  Google Scholar 

  34. Steinman, D., and C. A. Taylor. Flow imaging and computing: large artery hemodynamics. Ann. Biomed. Eng. 33(12):1704–1709, 2005.

    Article  PubMed  Google Scholar 

  35. Taylor, C. A., and C. A. Figueroa. Patient-specific modelling of cardiovascular mechanics. Annu. Rev. Biomed. Eng. 11:109–134, 2009.

    Article  PubMed  CAS  Google Scholar 

  36. Viceconti, M., G. Clapworthy, and S. Van Sint Jan. The virtual physiological human—a European initiative for in silico human modelling. J. Physiol. Sci. 58(7):441–446, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the following funding bodies: Rosetrees Trust, Fondation Leducq, British Heart Foundation, Royal Academy of Engineering/EPSRC and the UK National Institute of Health Research. We also thank the scientists from Medtronic Cardiovascular for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Capelli.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Claudio Capelli and Giovanni Biglino contributed equally to this publication.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capelli, C., Biglino, G., Petrini, L. et al. Finite Element Strategies to Satisfy Clinical and Engineering Requirements in the Field of Percutaneous Valves. Ann Biomed Eng 40, 2663–2673 (2012). https://doi.org/10.1007/s10439-012-0617-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0617-1

Keywords

Navigation