Skip to main content
Log in

Stress State and Strain Rate Dependence of the Human Placenta

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Maternal trauma (MT) in automotive collisions is a source of injury, morbidity, and mortality for both mothers and fetuses. The primary associated pathology is placental abruption in which the placenta detaches from the uterus leading to hemorrhaging and termination of pregnancy. In this study, we focused on the differences in placental tissue response to different stress states (tension, compression, and shear) and different strain rates. Human placentas were obtained (n = 11) for mechanical testing and microstructure analysis. Specimens (n = 4+) were tested in compression, tension, and shear, each at three strain rates (nine testing protocols). Microstructure analysis included scanning electron microscopy, histology, and interrupted mechanical tests to observe tissue response to various loading states. Our data showed the greatest stiffness in tension, followed by compression, and then by shear. The study concludes that mechanical behavior of human placenta tissue (i) has a strong stress state dependence and (ii) behaves in a rate dependent manner in all three stress states, which had previously only been shown in tension. Interrupted mechanical tests revealed differences in the morphological microstructure evolution that was driven by the kinematic constraints from the different loading states. Furthermore, these structure–property data can be used to develop high fidelity constitutive models for MT simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abbassi-Ghanavati, M., B. M. Casey, C. Y. Spong, D. D. McIntire, L. M. Halvorson, and F. G. Cunningham. Pregnancy outcomes in women with thyroid peroxidase antibodies. Obstet. Gynecol. 116:381–386, 2010.

    Article  PubMed  Google Scholar 

  2. Aboutanos, M. B. M. D. M. P. H., S. Z. M. D. Aboutanos, D. B. S. Dompkowski, T. M. M. D. Duane, A. K. M. D. Malhotra, and R. R. M. D. Ivatury. Significance of motor vehicle crashes and pelvic injury on fetal mortality: a five-year institutional review. J. Trauma-Inj. Infect. Crit. Care 65:616–620, 2008.

    Article  Google Scholar 

  3. Ananth, C. V., Y. Oyelese, L. Yeo, A. Pradhan, and A. M. Vintzileos. Placental abruption in the united states, 1979 through 2001: temporal trends and potential determinants. Am. J. Obstet. Gynecol. 192:191–198, 2005.

    Article  PubMed  Google Scholar 

  4. Ananth, C. V., D. A. Savitz, and M. A. Williams. Placental abruption and its association with hypertension and prolonged rupture of membranes: a methodologic review and meta-analysis. Obstet. Gynecol. 88:309–318, 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Begonia, M., R. Prabhu, J. Liao, M. Horstemeyer, and L. Williams. The influence of strain rate dependency on the structure–property relations of porcine brain. Ann. Biomed. Eng. 38:3043–3057, 2010.

    Article  PubMed  Google Scholar 

  6. Carew, E. O., J. Patel, A. Garg, P. Houghtaling, E. Blackstone, and I. Vesely. Effect of specimen size and aspect ratio on the tensile properties of porcine aortic valve tissues. Ann. Biomed. Eng. 31:526–535, 2003.

    Article  PubMed  CAS  Google Scholar 

  7. Chames, M. C. M., and M. D. M. Pearlman. Trauma during pregnancy: outcomes and clinical management. Clin. Obstet. Gynecol. 51:398–408, 2008.

    Article  PubMed  Google Scholar 

  8. Clemmer, J., J. Liao, D. Davis, M. F. Horstemeyer, and L. N. Williams. A mechanistic study for strain rate sensitivity of rabbit patellar tendon. J. Biomech. 43:2785–2791, 2010.

    Article  PubMed  Google Scholar 

  9. Colgan, N. C., M. D. Gilchrist, and K. M. Curran. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations. Prog. Biophys. Mol. Biol. 103:304–309, 2010.

    Article  PubMed  Google Scholar 

  10. Connolly, A. M., V. L. Katz, K. L. Bash, M. J. McMahon, and W. F. Hansen. Trauma and pregnancy. Am. J. Perinatol. 14:331–336, 1997.

    Article  PubMed  CAS  Google Scholar 

  11. Daria, C. R. Trauma care and managing the injured pregnant patient. J. Obstet. Gynecol. Neonatal. Nurs. 38:704–714, 2009.

    Article  Google Scholar 

  12. Delotte, J., M. Behr, L. Thollon, P.-J. Arnoux, P. Baque, A. Bongain, and C. Brunet. Pregnant woman and road safety: experimental crash test with post mortem human subject. Surg. Radiol. Anat. 30:185–189, 2008.

    Article  PubMed  Google Scholar 

  13. Dighe, M., A. Gokhale, and M. Horstemeyer. Effect of loading condition and stress state on damage evolution of silicon particles in an Al–Si–Mg-base cast alloy. Metall. Mater. Trans. A 33:555–565, 2002.

    Article  Google Scholar 

  14. Duma, S. M. Pregnant Occupants Biomechanics: Advances in Automobile Safety Research. Warrendale, PA: Society of Automotive Engineers, 2010.

    Google Scholar 

  15. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1981.

    Google Scholar 

  16. Gao, Z., and J. P. Desai. Estimating zero-strain states of very soft tissue under gravity loading using digital image correlation. Med. Image Anal. 14:126–137, 2010.

    Article  PubMed  Google Scholar 

  17. Hall, D. R. Abruptio placentae and disseminated intravascular coagulopathy. Semin. Perinatol. 33:189–195, 2009.

    Article  PubMed  Google Scholar 

  18. Hitosugi, M., Y. Motozawa, M. Kido, T. Yokoyama, H. Kawato, K. Kuroda, and S. Tokudome. Traffic injuries of the pregnant women and fetal or neonatal outcomes. Forensic Sci. Int. 159:51–54, 2006.

    Article  PubMed  Google Scholar 

  19. Horstemeyer, M. F., J. Lathrop, A. M. Gokhale, and M. Dighe. Modeling stress state dependent damage evolution in a cast Al–Si–Mg aluminum alloy. Theor. Appl. Fract. Mech. 33:31–47, 2000.

    Article  CAS  Google Scholar 

  20. Hu, J., K. D. Klinich, C. S. Miller, G. Nazmi, M. D. Pearlman, L. W. Schneider, and J. D. Rupp. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models. J. Biomech. 42:2528–2534, 2009.

    Article  PubMed  Google Scholar 

  21. Hu, J., K. Klinich, C. Miller, J. Rupp, G. Nazmi, M. Pearlman, and L. Schneider. A stochastic visco-hyperelastic model of human placenta tissue for finite element crash simulations. Ann. Biomed. Eng. 39:1074–1083, 2011.

    Article  PubMed  Google Scholar 

  22. Kastelic, J., and E. Baer. Deformation of tendon collagen. In: The Mechanical Properties of Biological Materials, edited by J. F. Vincient, and J. D. Currey. Cambridge: Society for Experimental Biology, 1980, pp. 397–433.

    Google Scholar 

  23. Klinich, K. D., C. A. C. Flannagan, J. D. Rupp, M. Sochor, L. W. Schneider, and M. D. Pearlman. Fetal outcome in motor-vehicle crashes: effects of crash characteristics and maternal restraint. Am. J. Obstet. Gynecol. 198:450.e451–450.e459, 2008.

    Article  Google Scholar 

  24. Lee, J. B., and K. H. Yang. Development of a finite element model of the human abdomen. Stapp Car Crash J. 45:79–100, 2001.

    PubMed  CAS  Google Scholar 

  25. Liao, J., L. Yang, J. Grashow, and M. S. Sacks. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J. Biomech. Eng. 129:78–87, 2007.

    Article  PubMed  Google Scholar 

  26. Manoogian, S. J., J. A. Bisplinghoff, C. McNally, A. R. Kemper, A. C. Santago, and S. M. Duma. Dynamic tensile properties of human placenta. J. Biomech. 41:3436–3440, 2008.

    Article  PubMed  Google Scholar 

  27. Manoogian, S. J., J. A. Bisplinghoff, C. McNally, A. R. Kemper, A. C. Santago, and S. M. Duma. Effect of strain rate on the tensile material properties of human placenta. J. Biomech. Eng. 131:091008, 2009.

    Article  PubMed  Google Scholar 

  28. Mattox, K. L. M. D., and L. M. D. Goetzl. Trauma in pregnancy. Crit. Care Med. Crit. Illn. Pregnancy 33:S385–S389, 2005.

    Google Scholar 

  29. Moorcroft, D. M., J. D. Stitzel, G. G. Duma, and S. M. Duma. Computational model of the pregnant occupant: predicting the risk of injury in automobile crashes. Am. J. Obstet. Gynecol. 189:540–544, 2003.

    Article  PubMed  Google Scholar 

  30. Moorcroft, D., J. Stitzel, S. Duma, and G. Duma. The effects of uterine ligaments on fetal injury risk in frontal automobile crashes. Proc. Inst. Mech. Eng. D: J. Automob. Eng. 217:1049–1055, 2003.

    Article  Google Scholar 

  31. Motozawa, Y., M. Hitosugi, T. Abe, and S. Tokudome. Effects of seat belts worn by pregnant drivers during low-impact collisions. Am. J. Obstet. Gynecol. 203(1):62.e1–62.e8, 2010.

    Article  Google Scholar 

  32. Nyein, M. K., A. M. Jason, L. Yu, C. M. Pita, J. D. Joannopoulos, D. F. Moore, and R. A. Radovitzky. In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc. Natl. Acad. Sci. 107:20703–20708, 2010.

    Article  PubMed  CAS  Google Scholar 

  33. Oxford, C. M. M., and J. B. Ludmir. Trauma in pregnancy. Clin. Obstet. Gynecol. 52:611–629, 2009.

    Article  PubMed  Google Scholar 

  34. Rupp, J. D. K. K., S. Moss, J. Zhou, M. D. Pearlman, and L. W. Schneider. Development and testing of a prototype pregnant abdomen for the small-female hybrid III ATD. Stapp Car Crash J. 45:18, 2001.

    Google Scholar 

  35. Viidik, A. Simultaneous mechanical and light microscopic studies of collagen fibers. Zeitschrift fur Anatomie und Entwicklungsgeschichte 136:204–212, 1972.

    Article  PubMed  CAS  Google Scholar 

  36. Weaver, A. A., K. L. Loftis, S. M. Duma, and J. D. Stitzel. Biomechanical modeling of eye trauma for different orbit anthropometries. J. Biomech. 44:1296–1303, 2011.

    Article  PubMed  Google Scholar 

  37. Wren, T. A., and D. R. Carter. A microstructural model for the tensile constitutive and failure behavior of soft skeletal connective tissues. J. Biomech. Eng. 120:55–61, 1998.

    Article  PubMed  CAS  Google Scholar 

  38. Yamada, H. Strength of Biological Materials. Baltimore: Williams and Wilkinson, 1970.

    Google Scholar 

  39. Yu, M., S. Manoogian, S. M. Duma, and J. D. Stitzel. Finite element modeling of human placental tissue. Ann. Adv. Automot. Med. 53:257–270, 2009.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study is supported by the MAFES SRI (awarded to JL) and Health Resources and Services Administration (HRSA) (DHHS R1CRH10429-01-00). We thank Karen Tiffen, RNC, Chrissy Poole, RNC, Dana Brooks, RNC, Cindy Patton, RN, Heather McMillian, ST, Bella Oswalt, ST, Sonya Anderson, RN, Rene Guines, ST, and other staff members of the Labor & Delivery Unit at OCH Regional Medical Center for their assistance with patient eligibility and tissue procurement; we also appreciate help from Amanda Lawrence (MSU EM Center) for her assistance in SEM imaging. We would also like to thank the Center for Advanced Vehicular Systems (CAVS) at the Mississippi State University for helping to support this research effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liao.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weed, B.C., Borazjani, A., Patnaik, S.S. et al. Stress State and Strain Rate Dependence of the Human Placenta. Ann Biomed Eng 40, 2255–2265 (2012). https://doi.org/10.1007/s10439-012-0588-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0588-2

Keywords

Navigation