Skip to main content
Log in

The Influence of Strain Rate Dependency on the Structure–Property Relations of Porcine Brain

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study examines the internal microstructure evolution of porcine brain during mechanical deformation. Strain rate dependency of porcine brain was investigated under quasi-static compression for strain rates of 0.00625, 0.025, and 0.10 s−1. Confocal microscopy was employed at 15, 30, and 40% strain to quantify microstructural changes, and image analysis was implemented to calculate the area fraction of neurons and glial cells. The nonlinear stress–strain behavior exhibited a viscoelastic response from the strain rate sensitivity observed, and image analysis revealed that the mean area fraction of neurons and glial cells increased according to the applied strain level and strain rate. The area fraction for the undamaged state was 7.85 ± 0.07%, but at 40% strain the values were 11.55 ± 0.35%, 13.30 ± 0.28%, and 19.50 ± 0.14% for respective strain rates of 0.00625, 0.025, and 0.10 s−1. The increased area fractions were a function of the applied strain rate and were attributed to the compaction of neural constituents and the stiffening tissue response. The microstructural variations in the tissue were linked to mechanical properties at progressive levels of compression in order to generate structure–property relationships useful for refining current FE material models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Arbogast, K. B., and S. S. Margulies. Regional differences in mechanical properties of the porcine central nervous system. In: 41st Stapp Car Crash Conference Proceedings, 1997, SAE 973336.

  2. Arbogast, K. B., and S. S. Margulies. Material characterization of the brainstem from oscillatory shear tests. J. Biomech. 31:801–807, 1998.

    Article  CAS  PubMed  Google Scholar 

  3. Arbogast, K. B., and S. S. Margulies. A fiber-reinforced composite model of the viscoelastic behavior of the brainstem in shear. J. Biomech. 32:865–870, 1999.

    Article  CAS  PubMed  Google Scholar 

  4. Brands, D. W. A., P. H. M. Bovendeerd, G. W. M. Peters, and J. S. H. M. Wismans. The large shear strain dynamic behavior of in vitro porcine brain tissue and the silicone gel model material. In: Proceedings of the 44th Stapp Car Crash Conference, 2000, SAE 2000-01-SC17.

  5. Cheng, S., and L. E. Bilston. Unconfined compression of white matter. J. Biomech. 40:117–124, 2007.

    Article  PubMed  Google Scholar 

  6. Cloots, R. J. H., H. M. T. Gervaise, J. A. W. Van Dommelen, and M. G. D. Geers. Biomechanics of traumatic brain injury: influences of the morphologic heterogeneities of the cerebral cortex. Ann. Biomed. Eng. 36(7):1203–1215, 2008.

    Article  CAS  PubMed  Google Scholar 

  7. Darvish, K. K., and J. R. Crandall. Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue. Med. Eng. Phys. 23(9):633–645, 2001.

    Article  CAS  PubMed  Google Scholar 

  8. DeWeese, R. L., and D. M. Moorcroft. Evaluation of a Head Injury Criteria Component Test Device. Oklahoma City: FAA Civil Aerospace Medical Institute, Federal Aviation Administration, 2004.

  9. Dickerson, J. W. T., and J. Dobbing. Prenatal and postnatal growth and development of the central nervous system of the pig. Proc. R. Soc. Lond. B 166:384–395, 1966.

    Article  Google Scholar 

  10. Donnelly, B. R., and J. Medige. Shear properties of human brain tissue. J. Biomech. Eng. 119:423–432, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Estes, M. S., and J. H. McElhaney. Response of Brain Tissue of Compressive Loading, 1970, ASME 70-BHF-13.

  12. Finkelstein, E., P. Corso, and T. Miller. The Incidence and Economic Burden of Injuries in the United States. New York: Oxford University Press, 2006.

  13. Franceschini, G., D. Bigoni, P. Regitnig, and G. A. Holzapfel. Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54:2592–2620, 2006.

    Article  Google Scholar 

  14. Goldsmith, W., and K. L. Monson. The state of head injury biomechanics: past, present, and future—part 2: physical experimentation. Crit. Rev. Biomed. Eng. 33:105–207, 2005.

    Article  PubMed  Google Scholar 

  15. Horstemeyer, M. F., J. Lathrop, A. M. Gokhale, and M. Dighe. Modeling stress state dependent damage evolution in a cast al-si-mg aluminum alloy. Theor. Appl. Fract. Mech. 33:31–47, 2000.

    Article  CAS  Google Scholar 

  16. Hrapko, M., J. A. W. van Dommelen, G. W. M. Peters, and J. S. H. M. Wismans. The mechanical behavior of brain tissue: large strain response and constitutive modeling. Biorheology 43:626–646, 2006.

    Google Scholar 

  17. Hrapko, M., J. A. W. van Dommelen, G. W. M. Peters, and J. S. H. M. Wismans. The influence of test conditions on characterization of the mechanical properties of brain tissue. J. Biomech. Eng. 130:031003, 2008.

    Article  CAS  PubMed  Google Scholar 

  18. Jones, E., N. T. Fear, and S. Wessely. Shell shock and mild traumatic brain injury: a historical review. Am. J. Psychiatry 164:1641–1645, 2007.

    Article  PubMed  Google Scholar 

  19. Kelley, B. J., O. Farkas, J. Lifshitz, and J. T. Povlishock. Traumatic axonal injury in the perisomatic domain triggers ultrarapid secondary axotomy and wallerian degeneration. Exp. Neurol. 198:350–360, 2006.

    Article  PubMed  Google Scholar 

  20. Kleiven, S., and J. Ho. Dynamic response of the brain with vasculature. J. Biomech. 40:3006–3012, 2007.

    Article  PubMed  Google Scholar 

  21. Langlois, J. A., W. Rutland-Brown, and K. E. Thomas. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitilizations, and Deaths. Atlanta, GA: National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, 2006.

  22. Langlois, J. A., W. Rutland-Brown, and M. M. Wald. The epidemiology and impact of traumatic brain injury: a brief overview. J. Head Trauma Rehabil. 21:375–378, 2006.

    Article  PubMed  Google Scholar 

  23. Lind, N. M., A. Moustgaard, J. Jelsing, G. Vajta, P. Cumming, and A. K. Hansen. The use of pigs in neuroscience: modeling brain disorders. Neurosci. Biobehav. Rev. 31:728–751, 2007.

    Article  CAS  PubMed  Google Scholar 

  24. Miller, K. Biomechanics of soft tissues. Med. Sci. Monitor 6(1):158–167, 2000.

    CAS  Google Scholar 

  25. Miller, K., and K. Chinzei. Constitutive modeling of brain tissue: experiment and theory. J. Biomech. 30:1115–1121, 1997.

    Article  CAS  PubMed  Google Scholar 

  26. Miller, K., and K. Chinzei. Mechanical properties of brain tissue in tension. J. Biomech. 35:482–490, 2002.

    Google Scholar 

  27. Miller, K., K. Chinzei, G. Orssengo, and P. Bednarz. Mechanical properties of brain tissue in vivo: experiment and computer simulation. J. Biomech. 33:1369–1376, 2000.

    Article  CAS  PubMed  Google Scholar 

  28. National Dissemination Center for Children with Disabilities. Factsheet on Traumatic Brain Injury. Washington, DC: United States Department of Education, 2006.

  29. National Institute of Neurological Disorders and Stroke. Traumatic Brain Injury: Hope Through Research. Bethesda, MD: United States Department of Health and Human Services, 2006

  30. Nolte, J. The Human Brain: An Introduction to its Functional Anatomy (5th ed.). St. Louis, MO: Mosby, Inc, 2002.

    Google Scholar 

  31. Ommaya, A. K., L. Thibault, and F. A. Bandak. Mechanisms of impact head injury. Int. J. Impact Eng. 15:535–560, 1994.

    Article  Google Scholar 

  32. Park, E., J. D. Bell, and A. J. Baker. Traumatic brain injury: can the consequences be stopped? Can. Med. Assoc. J. 178(9):1163–1170, 2008.

    Article  Google Scholar 

  33. Prange, M. T., and S. S. Margulies. Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124:244–252, 2002.

    Article  PubMed  Google Scholar 

  34. Prange, M. T., D. F. Meaney, and S. S. Margulies. Directional properties of gray and white brain tissue undergoing large deformation. Adv. Bioeng. 39:151–152, 1998.

    Google Scholar 

  35. Raul, J. S., D. Baumgartner, R. Willinger, and B. Ludes. Finite element modeling of human head injuries caused by a fall. Int. J. Legal Med. 120:212–218, 2006.

    Article  PubMed  Google Scholar 

  36. Shuck, L. Z., and S. H. Advani. Rheological response of human brain tissue in shear. ASME J. Basic Eng. 94:905–911, 1972.

    Google Scholar 

  37. Streit, W. J. Microglial response to brain injury: a brief synopsis. Toxicol. Pathol. 28(28):28–30, 2000.

    Article  CAS  PubMed  Google Scholar 

  38. Takhounts, E. G., J. R. Crandall, and B. T. Matthews. Shear properties of brain tissue using nonlinear green-rivlin viscoelastic constitutive equation. In: Injury Biomechanics Research, Proceedings of the 27th International Workshop, Vol. 11, 1999, pp. 141–156.

  39. Takhounts, E. G., J. R. Crandall, and K. K. Darvish. On the importance of nonlinearity of brain tissue under large deformations. Stapp Car Crash J. 47:107–134, 2003.

    PubMed  Google Scholar 

  40. Tamura, A., S. Hayashi, I. Watanabe, K. Nagayama, and T. Matsumoto. Mechanical characterization of brain tissue in high-rate compression. J. Biomech. Sci. Eng. 2(3):115–126, 2007.

    Article  Google Scholar 

  41. Thibault, K. L., and S. S. Margulies. Age-dependent material properties of the porcine cerebrum: effect on pediatric inertial head injury criteria. J. Biomech. 31:1119–1126, 1998.

    Article  CAS  PubMed  Google Scholar 

  42. Thurman, D., C. Alverson, K. Dunn, J. Guerrero, and J. Sniezek. Traumatic brain injury in the United States: a public health perspective. J. Head Trauma Rehabil. 14(6):602–615, 1999.

    Article  CAS  PubMed  Google Scholar 

  43. Velardi, F., F. Fraternali, and M. Angelillo. Anisotropic constitutive equations and experimental tensile behavior of brain tissue. Biomech. Model. Mechanobiol. 5:53–61, 2006.

    Article  CAS  PubMed  Google Scholar 

  44. Versace, J. A. Review of the severity index. In: Stapp Car Crash Conference Proceedings. Society of Automotive Engineers, 1971.

  45. Widmaier, E. P., H. Raff, and K. T. Strang. Structure of the nervous system. In: Vander’s Human Physiology: The Mechanisms of Body Function, 10th edn. Columbus, OH: McGraw-Hill, 2006, pp. 191–205, 332–334.

  46. Zhang, L., K. H. Yang, and A. I. King. A proposed injury threshold for mild traumatic brain injury. Trans. ASME 126:226–236, 2004.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the U.S. Army TACOM Life Cycle Command under Contract No. W56HZV-08-C-0236 through a subcontract with Mississippi State University and was performed for the Simulation Based Reliability and Safety (SimBRS) research program. The authors also recognize the Center for Advanced Vehicular Systems (CAVS) and the Department of Agricultural and Biological Engineering at Mississippi State University for their ongoing support of this research. Further acknowledgment must be given to Sansing Meat Services in Maben, MS for their assistance in providing porcine brain tissue specimens as well as Amanda Lawrence and Bill Monroe of the Mississippi State University Electron Microscopy Center for their assistance with the histological processing and operation of the confocal laser scanning microscope, respectively. In addition, the authors recognize Dr. Jim Cooley for his assistance in the extraction procedure at the Mississippi State College of Veterinary Medicine. UNCLASSIFIED: Dist A. Approved for public release.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakiesha N. Williams.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begonia, M.T., Prabhu, R., Liao, J. et al. The Influence of Strain Rate Dependency on the Structure–Property Relations of Porcine Brain. Ann Biomed Eng 38, 3043–3057 (2010). https://doi.org/10.1007/s10439-010-0072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0072-9

Keywords

Navigation