Skip to main content

Advertisement

Log in

Application of Recombinant Fusion Proteins for Tissue Engineering

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Extracellular matrix (ECM) plays important roles in tissue engineering because cellular growth and differentiation, in the two-dimensional cell culture as well as in the three-dimensional space of the developing organism, require ECM with which the cells can interact. Also, the development of new synthetic ECMs is very important because ECMs facilitate the localization and delivery of cells to the specific sites in the body. Therefore, the development of synthetic ECMs to replace the natural ECMs is increasingly essential and promising in tissue engineering. Recombinant genetic engineering method has enabled the synthesis of protein-based polymers with precisely controlled functionalities for the development of new synthetic ECMs. In this review, the design and construction of structure-based recombinant fusion proteins such as elastin-like polymers (ELPs) and silk-like polymers (SLPs), cell-bound growth factor-based recombinant fusion proteins such as basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF), hybrid system composed of recombinant protein and synthetic polymer, and E-cadherin-based fusion protein by recombinant genetic engineering were explained for application of the synthetic ECMs. Modulation of mechanical properties, stimuli-sensitivity, biodegradation and cell recognition can be achieved through precise control of sequence, length, hydrophobicity and cell binding domain by recombinant genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abatangelo, G., P. Brun, M. Radice, R. Cortivo, and M. K. H. Auth. Tissue engineering. In: Integrated Biomaterials Science, edited by R. Barmucci. New York: Kluwer Academic, 2001, p. 885.

    Google Scholar 

  2. Altman, G. H., F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan. Silk-based biomaterials. Biomaterials 24:401–416, 2003.

    Article  PubMed  CAS  Google Scholar 

  3. Andrades, J. A., L. T. Wu, F. L. Hall, M. E. Nimmi, and J. Becerra. Engineering, expression, and renaturation of a collagen-targeted human bFGF fusion protein. Growth Factors 18:261–275, 2001.

    Article  PubMed  CAS  Google Scholar 

  4. Asakura, T., C. Tanaka, M. Yang, J. Yao, and M. Kurokawa. Production and characterization of a silk-like hybrid protein, based on the polyalanine region of Samia cynthia ricini silk fibroin and a cell adhesive region derived from fibronectin. Biomaterials 25:617–624, 2004.

    Article  PubMed  CAS  Google Scholar 

  5. Atala, A., and D. Mooney. Synthetic Biodegradable Polymer Scaffolds. Boston: Birkhauser, 1997.

    Google Scholar 

  6. Bini, E., C. W. Foo, J. Huang, V. Karageorgiou, B. Kitchel, and D. L. Kaplan. RGD-functionalized bioengineered spider dragline silk biomaterial. Biomacromolecules 7:3139–3145, 2006.

    Article  PubMed  CAS  Google Scholar 

  7. Bouhadir, K. H., and D. J. Mooney. In vitro and in vivo models for the reconstruction of intercellular signaling. Ann. NY Acad. Sci. 842:188–194, 1998.

    Article  PubMed  CAS  Google Scholar 

  8. Cappello, J., and K. Park (Eds.). Controlled Drug Delivery: Challenges and Strategies. Washington DC: American Chemical Society, 1997, p. 439.

    Google Scholar 

  9. Chong, B. F., L. M. Blank, R. McLaughlin, and L. K. Nielsen. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol. 66:341–351, 2005.

    Article  PubMed  CAS  Google Scholar 

  10. Cohen, S. The epidermal growth factor (EGF). Cancer 51:1787–1791, 1983.

    Article  PubMed  CAS  Google Scholar 

  11. Cutler, S. M., and A. J. Garcia. Engineering cell adhesive surfaces that direct integrin alpha5beta1 binding using a recombinant fragment of fibronectin. Biomaterials 24:1759–1770, 2003.

    Article  PubMed  CAS  Google Scholar 

  12. Di Zio, K., and D. A. Tirrell. Mechanical properties of artificial protein matrices engineered for control of cell and tissue behavior. Macromolecules 36:1553–1558, 2003.

    Article  CAS  Google Scholar 

  13. Duan, X. J., H. X. Niu, W. S. Tan, and X. Zhang. Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 19:299–306, 2009.

    PubMed  CAS  Google Scholar 

  14. Ehrbar, M., S. C. Rizzi, R. Hlushchuk, V. Djonov, A. H. Zisch, J. A. Hubbell, F. E. Weber, and M. P. Lutolf. Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering. Biomaterials 28:3856–3866, 2007.

    Article  PubMed  CAS  Google Scholar 

  15. Elloumi, I., R. Kobayashi, H. Funabashi, M. Mie, and E. Kobatake. Construction of epidermal growth factor fusion protein with cell adhesive activity. Biomaterials 27:3451–3458, 2006.

    Article  PubMed  CAS  Google Scholar 

  16. Ghandehari, H., and J. Cappello. Genetic engineering of protein-based polymers: potential in controlled drug delivery. Pharm. Res. 15:813–815, 1998.

    Article  PubMed  CAS  Google Scholar 

  17. Ghosh, K., and D. E. Ingber. Micromechanical control of cell and tissue development: implications for tissue engineering. Adv. Drug Deliv. Rev. 59:1306–1318, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Girotti, A., J. Reguera, J. C. Rodriguez-Cabello, F. J. Arias, M. Alonso, and A. M. Testera. Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J. Mater. Sci. Mater. Med. 15:479–484, 2004.

    Article  PubMed  CAS  Google Scholar 

  19. Gosline, J. M., M. E. DeMont, and M. W. Denny. The structure and properties of spider silk. Endeavour 10:37–43, 1986.

    Article  Google Scholar 

  20. Griffith, L. G., and G. Naughton. Tissue engineering–current challenges and expanding opportunities. Science 295:1009–1014, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. Haider, M., J. Cappello, H. Ghandehari, and K. W. Leong. In vitro chondrogenesis of mesenchymal stem cells in recombinant silk-elastinlike hydrogels. Pharm. Res. 25:692–699, 2008.

    Article  PubMed  CAS  Google Scholar 

  22. Haider, M., Z. Megeed, and H. Ghandehari. Genetically engineered polymers: status and prospects for controlled release. J. Control Rel. 95:1–26, 2004.

    Article  CAS  Google Scholar 

  23. Halstenberg, S., A. Panitch, S. Rizzi, H. Hall, and J. A. Hubbell. Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3:710–723, 2002.

    Article  PubMed  CAS  Google Scholar 

  24. Hashi, H., M. Hatai, F. Kimizuka, I. Kato, and Y. Yaoi. Angiogenic activity of a fusion protein of the cell-binding domain of fibronectin and basic fibroblast growth factor. Cell Struc. Func. 19:37–47, 1994.

    Article  CAS  Google Scholar 

  25. Hayashi, M., M. Tomita, and K. Yoshizato. Production of EGF-collagen chimeric protein which shows the mitogenic activity. Biochem. Biophys. Acta 1528:187–195, 2001.

    PubMed  CAS  Google Scholar 

  26. Heilshorn, S. C., K. A. Dizio, E. R. Welsh, and D. A. Tirrell. Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomaterials 24:4245–4252, 2003.

    Article  PubMed  CAS  Google Scholar 

  27. Hersel, U., C. Dahmen, and H. Kessler. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24:4385–4415, 2003.

    Article  PubMed  CAS  Google Scholar 

  28. Huang, J., C. Wong, A. George, and D. L. Kaplan. The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation. Biomaterials 28:2358–2367, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Inoue, C., H. Yamamoto, T. Nakamura, A. Ichihara, and H. Okamoto. Nicotinamide prolongs survival of primary cultured hepatocytes without involving loss of hepatocyte-specific functions. J. Biol. Chem. 264:4747–4750, 1989.

    PubMed  CAS  Google Scholar 

  30. Ishikawa, T., H. Terai, T. Yamamoto, K. Harada, and T. Kitajima. Delivery of a growth factor fusion protein having collagen-binding activity to wound tissues. Artif. Organs 27:147–154, 2003.

    Article  PubMed  CAS  Google Scholar 

  31. Ito, H., A. Steplewski, T. Alabyeva, and A. Gertala. Testing the utility of rationally engineered recombinant collagen-like proteins for applications in tissue engineering. J. Biomed. Mater. Res. A 76:551–560, 2006.

    PubMed  Google Scholar 

  32. Jang, J. H., J. H. Hwang, and C. P. Chung. Production of recombinant human tenascin-C module containing a cell adhesion recognition motif of RGD. Biotechnol. Lett. 26:1831–1835, 2004.

    Article  PubMed  CAS  Google Scholar 

  33. Jing, P., J. S. Rudra, A. B. Herr, and J. H. Collier. Self-assembling peptide-polymer hydrogels designed from the coiled coil region of fibrin. Biomacromolecules 9:2438–2446, 2008.

    Article  PubMed  CAS  Google Scholar 

  34. Kawase, Y., Y. Ohdate, T. Shimojo, Y. Taguchi, F. Kimizuka, and I. Kato. Construction and characterization of a fusion protein with epidermal growth factor and the cell-binding domain of fibronectin. FEBS Lett. 298:126–128, 1992.

    Article  PubMed  CAS  Google Scholar 

  35. Langer, R., and D. A. Tirrell. Designing materials for biology and medicine. Nature 428:487–492, 2004.

    Article  PubMed  CAS  Google Scholar 

  36. Lazaris, A., S. Arcidiacono, Y. Huang, J. Zhou, F. Duguay, N. Chretien, E. A. Welsh, J. W. Soares, and C. N. Karatzas. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476, 2002.

    Article  PubMed  CAS  Google Scholar 

  37. Lee, J., C. W. Macosko, and D. W. Urry. Elastomeric polypentapeptides cross-linked into matrixes and fibers. Biomacromolecules. 2:170–179, 2001.

    Article  PubMed  CAS  Google Scholar 

  38. Lim, D. W., D. L. Nettles, L. A. Setton, and A. Chilkoti. Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl)phosphines in aqueous solution. Biomacromolecules 8:1463–1470, 2007.

    Article  PubMed  CAS  Google Scholar 

  39. Lim, D. W., D. L. Nettles, L. A. Setton, and A. Chilkoti. In situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules 9:222–230, 2008.

    Article  PubMed  CAS  Google Scholar 

  40. Lin, H., B. Chen, W. Sun, W. Zhao, Y. Zhao, and J. Dai. The effect of collagen-targeting platelet-derived growth factor on cellularization and vascularization of collagen scaffolds. Biomaterials 27:5708–5714, 2006.

    Article  PubMed  CAS  Google Scholar 

  41. Liu, W., K. Merrett, M. Griffith, P. Fagerholm, S. Dravida, B. Heyne, J. C. Scaiano, M. A. Watsky, N. Shinozatki, N. Lagali, R. Munger, and F. Li. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials 29:1147–1158, 2008.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, J. C., and D. A. Tirrell. Cell response to RGD density in cross-linked artificial extracellular matrix protein films. Biomacromolecules 9:2984–2988, 2008.

    Article  PubMed  CAS  Google Scholar 

  43. McHale, M. K., L. A. Setton, and A. Chilkoti. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng. 11:1768–1779, 2005.

    Article  PubMed  CAS  Google Scholar 

  44. Merrett, K., W. Liu, D. Mitra, K. D. Camm, C. R. McLaughlin, Y. Liu, M. A. Watsky, F. Li, M. Griffith, and D. E. Fogg. Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials 30:5403–5408, 2009.

    Article  PubMed  CAS  Google Scholar 

  45. Meyer, D. E., and A. Chilkoti. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3:357–367, 2002.

    Article  PubMed  CAS  Google Scholar 

  46. Mie, M., Y. Mizushima, and E. Kobatake. Novel extracellular matrix for cell sheet recovery using genetically engineered elastin-like protein. J. Biomed. Mater. Res. Part B: Appl. Biomater. 86B:283–290, 2008.

    Article  CAS  Google Scholar 

  47. Nagaoka, M., H. Ise, and T. Akaike. Immobilized E-cadherin model can enhance cell attachment and differentiation of primary hepatocytes but not proliferation. Biotechnol. Lett. 24:1857–1862, 2002.

    Article  CAS  Google Scholar 

  48. Nagaoka, M., U. Koshimizu, S. Yuasa, F. Hattori, H. Chen, T. Tanaka, M. Okabe, K. Fukuda, and T. Akaike. E-cadherin-coated plates maintain pluripotent ES cells without colony formation. PLoS One 1:e15, 2006.

    Article  PubMed  CAS  Google Scholar 

  49. Nagapudi, K., W. T. Brinkman, B. S. Thomas, J. O. Park, M. Srinivasarao, E. Wright, V. P. Conticello, and E. L. Chaikof. Viscoelastic and mechanical behavior of recombinant protein elastomers. Biomaterials 26:4695–4706, 2005.

    Article  PubMed  CAS  Google Scholar 

  50. Nagarsekar, A., J. Crissman, M. Crissman, F. Ferrari, J. Cappello, and H. Ghandehari. Genetic engineering of stimuli-sensitive silkelastin-like protein block copolymers. Biomacromolecules 4:602–607, 2003.

    Article  PubMed  CAS  Google Scholar 

  51. Nicol, A., D. C. Gowda, T. M. Parker, and D. W. Urry. Elastomeric polytetrapeptide matrices: hydrophobicity dependence of cell attachment from adhesive (GGIP)n to nonadhesive (GGAP)n even in serum. J. Biomed. Mater. Res. 27:801–810, 1993.

    Article  PubMed  CAS  Google Scholar 

  52. Nicol, A., D. C. Gowda, and D. W. Urry. Cell adhesion and growth on synthetic elastomeric matrices containing Arg-Gly-Asp-Ser-3. J. Biomed. Mater. Res. 26:393–413, 1992.

    Article  PubMed  CAS  Google Scholar 

  53. Niewiadomska, P., D. Godt, and U. Tepass. DE-Cadherin is required for intercellular motility during Drosophila oogenesis. J. Cell Biol. 144:533–547, 1999.

    Article  PubMed  CAS  Google Scholar 

  54. Nishi, N., O. Matsushita, K. Yuube, H. Miyanaka, A. Okabe, and F. Wada. Collagen-binding growth factors: production and characterization of functional fusion proteins having a collagen-binding domain. Proc. Natl. Acad. Sci. USA 95:7018–7023, 1998.

    Article  PubMed  CAS  Google Scholar 

  55. Nowatzki, P. J., and D. A. Tirrell. Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking. Biomaterials 25:1261–1267, 2004.

    Article  PubMed  CAS  Google Scholar 

  56. Ogiwara, K., M. Nagaoka, C. S. Cho, and T. Akaike. Construction of a novel extracellular matrix using a new genetically engineered epidermal growth factor fused to IgG-Fc. Biotechnol. Lett. 27:1633–1637, 2005.

    Article  PubMed  CAS  Google Scholar 

  57. Ogiwara, K., M. Nagaoka, C. S. Cho, and T. Akaike. Effect of photo-immobilization of epidermal growth factor on the cellular behaviors. Biochem. Biophys. Res. Commun. 345:255–259, 2006.

    Article  PubMed  CAS  Google Scholar 

  58. Putnam, A. J., and D. J. Mooney. Tissue engineering using synthetic extracellular matrices. Nat. Med. 2:824–826, 1996.

    Article  PubMed  CAS  Google Scholar 

  59. Rapraeger, A. C., A. Krufka, and B. B. Olwin. Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708, 1991.

    Article  PubMed  CAS  Google Scholar 

  60. Rizzi, S. C., M. Ehrbar, S. Halstenber, G. P. Raeber, H. G. Schmoeke, H. Hagenmiiller, R. Muller, F. E. Weber, and J. A. Hubbell. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part II: biofunctional characteristics. Biomacromolecules 7:3019–3029, 2006.

    Article  PubMed  CAS  Google Scholar 

  61. Rizzi, S. C., and J. A. Hubbell. Recombinant protein-co-PEG networks as cell-adhesive and proteolytically degradable hydrogel matrixes. Part I: development and physicochemical characteristics. Biomacromolecules 6:1226–1238, 2005.

    Article  PubMed  CAS  Google Scholar 

  62. Rosso, F., A. Giordano, M. Barbarisi, and A. Barbarisi. From cell-ECM interactions to tissue engineering. J. Cell Physiol. 199:174–180, 2004.

    Article  PubMed  CAS  Google Scholar 

  63. Rosso, F., G. Marino, A. Giordando, M. Barbarishi, D. Parmeggiani, and A. Barbarishi. Smart materials as scaffolds for tissue engineering. J. Cell Physiol. 203:465–470, 2005.

    Article  PubMed  CAS  Google Scholar 

  64. Sandberg, L. B., J. G. Leslie, C. T. Leach, V. L. Alvarez, A. R. Torres, and D. W. Smith. Elastin covalent structure as determined by solid phase amino acid sequencing. Pathol. Biol. 33:266–274, 1985.

    PubMed  CAS  Google Scholar 

  65. Sheng, Z., S. B. Chang, and W. J. Chirico. Expression and purification of a biologically active basic fibroblast growth factor fusion protein. Protein Expr. Purif. 27:267–271, 2003.

    Article  PubMed  CAS  Google Scholar 

  66. Shin, H., S. Jo, and A. G. Mikos. Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364, 2003.

    Article  PubMed  CAS  Google Scholar 

  67. Shiroyanagi, Y., M. Yamato, Y. Yamazaki, H. Toma, and T. Okano. Transplantable urothelial cell sheets harvested noninvasively from temperature-responsive culture surfaces by reducing temperature. Tissue Eng. 9:1005–1012, 2003.

    Article  PubMed  CAS  Google Scholar 

  68. Silva, G. A., C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington, J. A. Kessler, and S. I. Stupp. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355, 2004.

    Article  PubMed  CAS  Google Scholar 

  69. Squires, C. H., J. Childs, S. P. Eisenberg, P. J. Polverini, and A. Sommer. Production and characterization of human basic fibroblast growth factor from Escherichia coli. J. Biol. Chem. 263:16297–16302, 1988.

    PubMed  CAS  Google Scholar 

  70. Sugahara, K., and H. Kitagawa. Heparin and heparan sulfate biosynthesis. IUBMB Life 54:163–175, 2002.

    Article  PubMed  CAS  Google Scholar 

  71. Sun, W., H. Lin, B. Chen, W. Zhao, Y. Zhao, and J. Dai. Promotion of peripheral nerve growth by collagen scaffolds loaded with collagen-targeting human nerve growth factor-beta. J. Biomed. Mater. Res. 83:1054–1061, 2007.

    Article  CAS  Google Scholar 

  72. Tabata, Y., and Y. Ikada. Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20:2169–2175, 1999.

    Article  PubMed  CAS  Google Scholar 

  73. Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol. 7:619–627, 1995.

    Article  PubMed  CAS  Google Scholar 

  74. Tomita, M., H. Munetsuna, T. Sato, T. Adachi, R. Hino, M. Hayashi, K. Shimizu, N. Nakamura, T. Tamura, and K. Yoshzato. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat. Biotechnol. 21:52–56, 2003.

    Article  PubMed  CAS  Google Scholar 

  75. Trabbic-Carlson, K., L. A. Setton, and A. Chilkoti. Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides. Biomacromolecules 4:572–580, 2003.

    Article  PubMed  CAS  Google Scholar 

  76. Urry, D. W. Molecular machines: How motion and other functions of living organisms can result from reversible chemical changes. Angew. Chem. Int. Ed. Eng. 32:819–841, 1993.

    Article  Google Scholar 

  77. Urry, D. W. Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers. J. Phys. Chem. B 101:11007–11028, 1997.

    Article  CAS  Google Scholar 

  78. Urry, D. W. Elastic molecular machines in metabolism and soft-tissue restoration. Trends Biotechnol. 17:249–257, 1999.

    Article  PubMed  CAS  Google Scholar 

  79. Urry, D. W., T. M. Parker, M. C. Reid, and D. C. Gowda. Biocompatibility of the bioelastic materials, poly(GVGVP) and its irradiation cross-linked matrix: summary of generic biological test results. J. Bioact. Compat. Polym. 6:263–282, 1991.

    Article  CAS  Google Scholar 

  80. Urry, D. W., A. Pattanaik, J. Xu, T. C. Woods, D. T. McPherson, and T. M. Parker. Elastic protein-based polymers in soft tissue augmentation and generation. J. Biomater. Sci. Polym. Ed. 9:1015–1048, 1998.

    Article  PubMed  CAS  Google Scholar 

  81. Wong, P., C. Foo, and D. L. Kaplan. Genetic engineering of fibrous proteins: spider dragline silk and collagen. Adv. Drug Deliv. Rev. 54:1131–1143, 2002.

    Article  Google Scholar 

  82. Wu, S. C., J. R. Chiang, and C. W. Lin. Novel cell adhesive glycosaminoglycan-binding proteins of Japanese encephalitis virus. Biomacromolecules 5:2160–2164, 2004.

    Article  PubMed  CAS  Google Scholar 

  83. Wu, S. C., J. C. Yu, S. H. Hsu, and D. C. Chen. Artificial extracellular matrix proteins contain heparin-binding and RGD-containing domains to improve osteoblast-like cell attachment and growth. J. Biomed. Mater. Res. A 79:557–565, 2006.

    PubMed  Google Scholar 

  84. Yang, C., P. J. Hillas, J. A. Baez, M. Nokelainen, J. Balan, J. Tang, R. Spiro, and J. W. Polarek. The application of recombinant human collagen in tissue engineering. BioDrugs 18:103–119, 2004.

    Article  PubMed  CAS  Google Scholar 

  85. Yu, H., and G. Stephanopoulos. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab. Eng. 10:24–32, 2008.

    Article  PubMed  CAS  Google Scholar 

  86. Yu, H., K. Tyo, H. Alper, D. Klein-Marcuschamer, and G. Stephanopoulas. A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors. Biotechnol. Bioeng. 101:788–796, 2008.

    Article  PubMed  CAS  Google Scholar 

  87. Zhao, W., B. Chen, X. Li, H. Lin, W. Sun, Y. Zhao, B. Wang, Y. Zhao, Z. Han, and J. Dai. Vascularization and cellularization of collagen scaffolds incorporated with two different collagen-targeting human basic fibroblast growth factors. J. Biomed. Mater. Res. A 82:630–636, 2007.

    PubMed  Google Scholar 

  88. Zisch, A. H., M. P. Lutolf, M. Ehrbar, G. P. Raeber, S. C. Rizzi, N. Davies, H. Schmokel, D. Bezuidenhout, V. Djonov, P. Zilla, and J. A. Hubbell. Cell-demanded release of VEGF from synthetic, biointeractive cell ingrowth matrices for vascularized tissue growth. FASEB J. 17:2260–2262, 2003.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the funds provided by Korea Research Foundation (KRF) (E00244).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toshihiro Akaike or Chong-Su Cho.

Additional information

Associate Editor Julia E. Babensee oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaoka, M., Jiang, HL., Hoshiba, T. et al. Application of Recombinant Fusion Proteins for Tissue Engineering. Ann Biomed Eng 38, 683–693 (2010). https://doi.org/10.1007/s10439-010-9935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9935-3

Keywords

Navigation