Skip to main content
Log in

The Role of Airway Epithelium in Replenishment of Evaporated Airway Surface Liquid From the Human Conducting Airways

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This article presents a multi-scale computational model describing the transport of water vapor and heat within the human conducting airways and its interaction with cellular fluid transport kinetics. This tight coupling between the cell and the evaporative flux allows the periciliary liquid (PCL) depth to be investigated within the context of a geometric framework of the human conducting airways with spatial and temporal variations. Within the in vivo airway, the epithelium is not the only source of fluid available for hydration of the PCL, and fluid may also be supplied from submucosal glands (SMGs) or via axial transport of the PCL. The model predicts that without fluid supplied by either SMGs or via PCL transport, significant dehydration would occur under normal breathing conditions. Previous studies have suggested that PCL transport from the periphery to the trachea would require absorption of the fluid by the epithelium; here we show that this can theoretically be sustained by the evaporative load under normal breathing conditions. SMGs could also provide a significant supply of fluid for airway hydration, a hypothesis which is corroborated by comparing the distribution of SMGs as a function of airway generation with the distribution of airway evaporative flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6

Similar content being viewed by others

References

  1. Ballard, S. T., and D. Spadafora. Fluid secretion by submucosal glands of the tracheobronchial airways. Respir. Physiol. Neurobiol., 159(3):271–277, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Ballard, S. T., L. Trout, Z. Bebok, E. J. Sorscher, and A. Crews. Cftr involvement in chloride, bicarbonate, and liquid secretion by airway submucosal glands. AJP - Lung Cell. Mol. Physiol. 277(4):L694–L699, 1999.

    CAS  Google Scholar 

  3. Blake, J. R. Mechanics of ciliary transport. Cell Motil. Suppl. 1:41–45, 1982.

    Article  Google Scholar 

  4. Blake, J. R. Mechanics of muco-ciliary transport. J. Appl. Math., 32(1–3):69–87, 1984.

    Google Scholar 

  5. Boucher, R. C. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu. Rev. Med. 58(1):157–170, 2007.

    Article  CAS  PubMed  Google Scholar 

  6. Boucher, R. C. Cystic fibrosis: a disease of vulnerability to airway surface dehydration. Trends Mol. Med. 13(6):231–240, 2007.

    Article  CAS  PubMed  Google Scholar 

  7. Boucher, R. C., M. J. Stutts, P. A. Bromberg, and J. T. Gatzy. Regional differences in airway surface liquid composition. J. Appl. Physiol. 50(3):613–620, 1981.

    CAS  PubMed  Google Scholar 

  8. Choi, J.-I., and C. S. Kim. Mathematical analysis of particle deposition in human lungs: an improved single path transport model. Inhal. Toxicol. 19(11):925–939, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Cole, P. The Respiratory Role of the Upper Airways: A Selective Clinical and Pathophysiological Review. New York: Decker Inc., 1992.

  10. Daviskas, E., I. Gonda, and S. D. Anderson. Mathematical modeling of heat and water transport in human respiratory tract. J. Appl. Physiol. 69(1):362–372, 1990.

    CAS  PubMed  Google Scholar 

  11. Daviskas, E., I. Gonda, and S. D. Anderson. Local airway heat and water vapour losses. Respir. Physiol. 84(1):115–132, 1991.

    Article  CAS  PubMed  Google Scholar 

  12. Ficker, J. H. Physiology and pathophysiology of bronchial secretion. Pneumologie 62(Suppl 1):11–13, 2008.

    Article  Google Scholar 

  13. Folkesson, H. G., M. A. Matthay, A. Frigeri, and A. S. Verkman. Transepithelial water permeability in microperfused distal airways. Evidence for channel-mediated water transport. J. Clin. Invest. 97(3):664–671, 1996.

    Article  CAS  PubMed  Google Scholar 

  14. Freund, B., and A. Youn. Environmental influences on body fluid balance during exercise—cold exposure. Technical report. Natick, MA: Army Research Inst. of Environmental Medicine.

  15. Fulford, G. R., and J. R. Blake. Muco-ciliary transport in the lung. J. Theor. Biol. 121(4):381–402, 1986.

    Article  CAS  PubMed  Google Scholar 

  16. Hanna, L. M. Modelling of Heat and Water Vapour Transport in the Human Respiratory Tract. PhD thesis, University of Pennsylvania, Philadelphia.

  17. Ingenito, E. P., J. Solway, E. R. McFadden, B. M. Pichurko, E. G. Cravalho, and J. M. Drazen. Finite difference analysis of respiratory heat transfer. J. Appl. Physiol. 61(6):2252–2259, 1986.

    CAS  PubMed  Google Scholar 

  18. Jiang, C., W. Finkbeiner, J. Widdicombe, P. B. McCray, and S. S. Miller. Altered fluid transport across airway epithelium in cystic fibrosis. Science 262:424–427, 1993.

    Article  CAS  PubMed  Google Scholar 

  19. Kilgour, E., N. Rankin, S. Ryan, and R. Pack. Mucociliary function deteriorates in the clinical range of inspired air temperature and humidity. Intensive Care Med. 30(7):1491–1494, 2004.

    Article  PubMed  Google Scholar 

  20. King, M., M. Agarwal, and J. Shukla. A planar model for mucociliary transport: effect of mucus viscoelasticity. Biorheology 30:49–61, 1993.

    CAS  PubMed  Google Scholar 

  21. Liu, J., and R. Ewing. An operator splitting method for nonlinear reactive transport equations and its implementation based on dll and com. In: Current Trends in High Performance Computing and Its Applications. Berlin: Springer, 2005, pp. 93–102.

  22. Livraghi, A., B. R. Grubb, E. J. Hudson, K. J. Wilkinson, J. K. Sheehan, M. A. Mall, W. K. O’Neal, R. C. Boucher, and S. H. Randell. Airway and lung pathology due to mucosal surface dehydration in {beta}-epithelial na+ channel-overexpressing mice: role of tnf-{alpha} and il-4r{alpha} signaling, influence of neonatal development, and limited efficacy of glucocorticoid treatment. J. Immunol. 182(7):4357–4367, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Matsui, H., S. H. Randell, S. W. Peretti, C. William-Davis, and R. C. Boucher. Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102(6):1125–1131, 1998.

    Article  CAS  PubMed  Google Scholar 

  24. McFadden, E. R., B. M. Pichurko, H. F. Bowman, E. Ingenito, S. Burns, N. Dowling, and J. Solway. Thermal mapping of the airways in humans. J. Appl. Physiol. 58(2):564–570, 1985.

    PubMed  Google Scholar 

  25. Mercer, R. R., M. L. Russell, V. L. Roggli, and J. D. Crapo. Cell number and distribution in human and rat airways. Am. J. Respir. Cell Mol. Biol. 10(6):613–624, 1994.

    CAS  PubMed  Google Scholar 

  26. Mercke, U. The influence of varying air humidity on mucociliary activity. Acta Otolaryngol. 79(1–2):133–139, 1975.

    Article  CAS  PubMed  Google Scholar 

  27. Mercke, U., and N. G. Toremalm. Air humidity and mucociliary activity. Ann. Otol. Rhinol. Laryngol. 85(1 Pt 1):32–37, 1976.

    CAS  PubMed  Google Scholar 

  28. Mitchell, J. W., E. R. Nadel, and J. A. Stolwijk. Respiratory weight losses during exercise. J. Appl. Physiol. 32(4):474–476, 1972.

    CAS  PubMed  Google Scholar 

  29. Nadel, J. A., B. Davis, and R. J. Phipps. Control of mucus secretion and ion transport in airways. Annu. Rev. Physiol. 41(1):369–381, 1979.

    Article  CAS  PubMed  Google Scholar 

  30. Perry, R., and D. Green. Perry’s Chemical Engineers’ Handbook, 7th ed. McGraw-Hill, 1997.

  31. Phillips, J. E., L. B. Wong, and D. B. Yeates. Bidirectional actively coupled water transport across tracheal epithelium. Resp. Crit. Care Med. 157(3):A848, 1998.

    Google Scholar 

  32. Promvonge, P., and S. Eiamsa-ard. Heat transfer augmentation in a circular tube using v-nozzle turbulator inserts and snail entry. Exp. Therm. Fluid Sci. 32(1):332–340, 2007.

    Article  CAS  Google Scholar 

  33. Quinton, P. M. Composition and control of secretions from tracheal bronchial submucosal glands. Nature 279(5713):551–552, 1979.

    Article  CAS  PubMed  Google Scholar 

  34. Ryan, S. N., N. Rankin, E. Meyer, and R. Williams. Energy balance in the intubated human airway is an indicator of optimal gas conditioning. Crit. Care Med. 30(2):355–361, 2002.

    Article  PubMed  Google Scholar 

  35. Saidel, G. M., K. L. Kruse, and F. P. Primiano. Model simulation of heat and water transport dynamics in an airway. J. Biomech. Eng. 105(2):188–193, 1983.

    Article  CAS  PubMed  Google Scholar 

  36. Salinas, D., P. M. Haggie, J. R. Thiagarajah, Y. Song, K. Rosbe, W. E. Finkbeiner, D. W. Nielson, and A. S. Verkman. Submucosal gland dysfunction as a primary defect in cystic fibrosis. FASEB J. 19(3):431–433, 2005.

    CAS  PubMed  Google Scholar 

  37. Sauret, V., P. M. Halson, I. W. Brown, J. S. Fleming, and A. G. Bailey. Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (ct) images. J. Anat. 200(Pt 2):123–134, 2002.

    Article  CAS  PubMed  Google Scholar 

  38. Sleigh, M. A. The physiology of cilia and mucociliary interactions. Annu. Rev. Physiol. 52(1):137–155, 1990.

    Article  PubMed  Google Scholar 

  39. Sleigh, M. A., J. R. Blake, and N. Liron. The propulsion of mucus by cilia. Am. Rev. Respir. Dis. 137(3):726–741, 1988.

    CAS  PubMed  Google Scholar 

  40. Tarran, R., B. Button, and R. C. Boucher. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu. Rev. Physiol. 68(1):543–561, 2006.

    Article  CAS  PubMed  Google Scholar 

  41. Tarran, R., B. Button, M. Picher, A. M. Paradiso, C. M. Ribeiro, E. R. Lazarowski, L. Zhang, P. L. Collins, R. J. Pickles, J. J. Fredberg, and R. C. Boucher. Normal and cystic fibrosis airway surface liquid Hhomeostasis: the effects of phasic shear stress and viral infections. J. Biol. Chem. 280(42):35751–35759, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Tawhai, M. H., and P. J. Hunter. Modeling water vapor and heat transfer in the normal and the intubated airways. Ann. Biomed. Eng. 32(4):609–622, 2004.

    Article  PubMed  Google Scholar 

  43. Tos, M. Development of the tracheal glands in man. Dan. Med. Bull. 15(7):206–215, 1968.

    CAS  PubMed  Google Scholar 

  44. Trout, L., J. T. Gatzy, and S. T. Ballard. Acetylcholine-induced liquid secretion by bronchial epithelium: role of cl- and hco-3 transport. AJP - Lung Cell. Mol. Physiol. 275(6):L1095–L1099, 1998.

    CAS  Google Scholar 

  45. Trout, L., M. I. Townsley, A. L. Bowden, and S. T. Ballard. Disruptive effects of anion secretion inhibitors on airway mucus morphology in isolated perfused pig lung. J. Physiol. 549(Pt 3):845–853, 2003.

    Article  CAS  PubMed  Google Scholar 

  46. Tsai, C. L., G. M. Saidel, E. R. McFadden, and J. M. Fouke. Radial heat and water transport across the airway wall. J. Appl. Physiol. 69(1):222–231, 1990.

    CAS  PubMed  Google Scholar 

  47. Tsu, M. E., A. L. Babb, D. D. Ralph, and M. P. Hlastala. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study. Ann. Biomed. Eng. 16(6):547–571, 1988.

    Article  CAS  PubMed  Google Scholar 

  48. Ueki, I., V. F. German, and J. A. Nadel. Micropipette measurement of airway submucosal gland secretion. Autonomic effects. Am. Rev. Respir. Dis. 121(2):351–357, 1980.

    CAS  PubMed  Google Scholar 

  49. Valvano, J., J. Allen, and H. F. Bowman. The simultaneous measurement of thermal conductivity, thermal diffusivity, and perfusion in small volumes of tissue. J. Biomech. Eng. 106:192–197, 1984.

    Article  CAS  PubMed  Google Scholar 

  50. Warren, N. J., M. H. Tawhai, and E. J. Crampin. A mathematical model of calcium-induced fluid secretion in airway epithelium. J. Theor. Biol. 259(4):837–849, 2009.

    Article  CAS  PubMed  Google Scholar 

  51. Warren, N. J., M. H. Tawhai, and E. J. Crampin. Mathematical modelling of calcium wave propagation in airway epithelium: evidence for regenerative atp release. Exp. Physiol. 95(1):232–249, 2010.

    Article  CAS  PubMed  Google Scholar 

  52. Weibel, E. R. Morphometry of the Human Lung, 1st ed. Berlin: Springer-Verlag, 1963.

    Google Scholar 

  53. Whimster, W. (1986). Number and mean volume of individual submucous glands in the human tracheobronchial tree. Appl. Pathol. 4:24–32, 1986.

    CAS  PubMed  Google Scholar 

  54. Widdicombe, J. H. Regulation of the depth and composition of airway surface liquid. J. Anat. 201(4):313–318, 2002.

    Article  CAS  PubMed  Google Scholar 

  55. Widdicombe, J. H., S. J. Bastacky, D. X. Wu, and C. Y. Lee. Regulation of depth and composition of airway surface liquid. Eur. Respir. J. 10(12):2892–2897, 1997.

    Article  CAS  PubMed  Google Scholar 

  56. Williams, R. B. The effects of excessive humidity. Respir. Care Clin. N. Am., 4(2):215–228, 1998.

    CAS  PubMed  Google Scholar 

  57. Williams, R., N. Rankin, T. Smith, D. Galler, and P. Seakins. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit. Care Med. 24(11):1920–1929, 1996.

    Article  CAS  PubMed  Google Scholar 

  58. Wine, J. J., and N. S. Joo. Submucosal glands and airway defense. Proc. Am. Thorac. Soc. 1(1):47–53, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Tawhai.

Additional information

Associate Editor Gerald Saidel oversaw the review of this article.

Appendix

Appendix

Comparison with Experimental Data

The thermo-fluids model was validated through comparison with the experimental results of McFadden et al. 24 To account for a description of heat and moisture transfer in the nose or mouth the inspired temperatures used for simulations were those measured experimentally by McFadden et al. at the sub-glottis region. The inspired air was assumed to be at 95% RH for the simulations. Figure 7 shows model simulations compared with experimental data from McFadden et al. 24 for different ventilatory conditions \((\dot V=15, 30,60,\) and 100 L min−1) when inspiring normal room air (26.7 °C, 8.8 mg L−1). Experimental data are reproduced showing mean and standard error with error bars. A distance of 0 mm corresponds to the proximal end of the trachea.

FIGURE 7
figure 7

Model simulations for inspiration of room temperature air with different ventilation rates compared with experimental data from McFadden et al. 24 End inspiration shown in blue, end expiration in red. Lumen gas temperature shown with dashed curves, and airway wall temperature shown with solid lines. Experimental data shown with error bars ± standard error. (a–d) Ventilation rates of \(\dot V=15, 30,60,\) and 100 L min−1, respectively

McFadden et al. 24 also considered the case where subjects inspired frigid air (−18.6 °C, 0.0 mg L−1). which was produced using dry compressed air cooled to sub-freezing temperatures. Simulations for the four different ventilatory conditions \((\dot V=15, 30,60, \)and 100 L min−1) were also performed (Fig. 8). Inspiratory temperatures were again set to match those measured experimentally at the sub-glottis region and relative humidity was set at an assumed value of 60%.

The model simulations shown in Figs. 7 and 8 show a good correlation with the experimental data from McFadden et al. 24 The simulated temperatures in the center of the lumen match well during both inspiration and expiration at low ventilation rates. With colder inspiratory temperatures and higher ventilation rates (above 30 L min−1) the model performs most poorly. This may in part be due to the upper bound on α being reached under high ventilation rates. However, at low ventilation rates Figs. 7 and 8 demonstrate the model’s ability to simulate different inspiratory conditions. While the model can predict airway temperature and humidity in anatomically accurate airway geometries, it is worth noting that within the literature there is a lack of data on airway humidity which would be necessary in order to provide further validation of the model’s performance. Within the model the equations describing the airway temperature and humidity are inexorably dependent. Therefore, an incorrect value in temperature will influence humidity, and vice versa. If the temperature distribution matches the experimental data with reasonable accuracy, it can be considered as an indirect validation of airway humidity.

FIGURE 8
figure 8

Model simulations for inspiration of cold air with different ventilation rates compared with experimental data from McFadden et al. 24 End inspiration shown in blue, end expiration in red. Lumen gas temperature shown with dashed curves, and airway wall temperature shown with solid lines. Experimental data shown with error bars ± standard error. (a–d) Ventilation rates of \(\dot V=15, 30,60, \) and 100 L min−1, respectively

Convergence and Anatomical vs. Symmetric Geometry

Comparison of experimental measurements with the model are performed once the model has reached pseudo-steady-state. The lumen air temperature and absolute humidity converge relatively quickly after approximately 10 breaths, whereas convergence of the airway wall temperature takes approximately 45 breaths to reach pseudo-steady-state (Fig. 9a). For the cellular variables, such as PCL depth, pseudo-steady-state was reached after a considerably longer period—approximately 100 breaths.

FIGURE 9
figure 9

(a) Convergence of airway wall temperature to pseudo-steady-state vs. breath number for inspiratory conditions of 32 °C, 80% RH and a ventilation rate of 6 L min−1. (b) Comparison of the pseudo-steady-state solution using symmetric and anatomical geometry. Inspiratory conditions are 34 °C, 100% RH. Symmetric geometry solution shown with a solid curve and anatomical solution shown with error bars with limits representing the solution range. End inspiration shown in blue, end expiration in red

Inspiration of room-temperature air (34 °C, 100% RH at the tracheal entrance) was simulated in models with symmetric and anatomical geometry. Mid-airstream temperatures (T 0) are shown in Fig. 9b for the end of inspiration (blue) and end of expiration (red). The symmetric model results are shown with a solid curve and the anatomical results shown with error bars representing the mean and solution range. For inspiration both geometries produce similar mean values for a given generation. However, for more distal generations the anatomical model displays an increasing range in the solution values due to the variability in the airway path length. However, the symmetric model did not produce vastly different values for temperature, or absolute or relative humidity from the anatomically based model.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, N.J., Crampin, E.J. & Tawhai, M.H. The Role of Airway Epithelium in Replenishment of Evaporated Airway Surface Liquid From the Human Conducting Airways. Ann Biomed Eng 38, 3535–3549 (2010). https://doi.org/10.1007/s10439-010-0111-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0111-6

Keywords

Navigation