Skip to main content
Log in

Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In order to provide a means for analysis of heat, water, and soluble gas exchange with the airways during tidal ventilation, a one dimensional theoretical model describing heat and water exchange in the respiratory airways has been extended to include soluble gas exchange with the airway mucosa and water exchange with the mucous layer lining the airways. Not only do heat, water, and gas exchange occur simultaneously, but they also interact. Heating and cooling of the airway surface and mucous lining affects both evaporative water and soluble gas exchange. Water evaporation provides a major source of heat exchange. The model-predicted mean airway temperature profiles agree well with literature data for both oral and nasal breathing validating that part of the model. With model parameters giving the best fit to experimental data, the model shows: (a) substantial heat recovery in the upper airways, (b) minimal respiratory heat and water loss, and (c) low average mucous temperatures and maximal increases in mucous thickness. For resting breathing of room air, heat and water conservation appear to be more important than conditioning efficiency. End-tidal expired partial pressures of very soluble gases eliminated by the lungs are predicted to be lower than the alveolar partial pressures due to the absorption of the expired gases by the airway mucosa. The model may be usable for design of experiments to examine mechanisms associated with the local hydration and dehydration dynamics of the mucosal surface, control of bronchial perfusion, triggering of asthma, mucociliary clearance and deposition of inhaled pollutant gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for experimenters, New York: John Wiley & Sons; 1978.

    Google Scholar 

  2. Baile, E.M.; Dahlby, R.W.; Wiggs, B.R.; Parsons, G.H.; Pare, P.E. Effect of cold and warm dry air hyperventilation on canine airway blood flow. J. Appl. Physiol., 62:526–532; 1987.

    CAS  PubMed  Google Scholar 

  3. Cole, P. Further observations on conditioning of respiratory air. J. Laryngol. Otol., 67:669–681; 1953.

    CAS  PubMed  Google Scholar 

  4. Coughanowr, D.R.; Koppel, L.B. Process systems analysis and control. New York: McGraw-Hill; 1965.

    Google Scholar 

  5. Deal, E.C., Jr.; McFadden, E.R., Jr.; Ingram, R.H., Jr.; Jaeger, J.J. Esophageal temperature during exercise in asthmatic and nonasthmatic subjects. J. Appl. Physiol., 46:484–490; 1979.

    PubMed  Google Scholar 

  6. Felder, R.M.; Rousseau, R.W. Elementary principles of chemical processes. New York: John Wiley & Sons; 1978.

    Google Scholar 

  7. Hanna, L. M. Modelling of heat and water vapor transport in the human respiratory tract (Ph.D. diss.), Philadelphia, University of Pennsylvania; 1983.

    Google Scholar 

  8. Hanna, L.M.; Scherer, P.W. Regional control of local airway heart and water vapor losses. J. Appl. Physiol. 61:624–632; 1986.

    CAS  PubMed  Google Scholar 

  9. Hindmarsh, A. LSODE, (computer program). Lawrence Livermore Laboratory; 1981.

  10. Holman, J.P. Heat transfer, 5th ed. New York: McGraw-Hill; 1981.

    Google Scholar 

  11. Ingelstedt, S. Studies on conditioning of air in the respiratory tract. Acta Otolaryngol. Suppl. 131:1–80, 1956.

    CAS  PubMed  Google Scholar 

  12. Ingenito, E.P. Respiratory fluid mechanics and heat transfer (Ph.D. diss.) Cambridge, Massachusetts Institute of Technology; 1984.

    Google Scholar 

  13. Ingenito, E.P.; Solway, J.; McFadden, E.R., Jr.; Pichurko, B.M.; Cravalho, E.G.; Drazen, J.M. Finite difference analysis of respiratory heat transfer. J. Appl. Physiol. 61:2252–2259; 1986.

    CAS  PubMed  Google Scholar 

  14. Jones, A.W. Determination of liquid/air partition coefficients for dilute solutions of ethanol in water, whole blood, and plasma. J. Analytical Toxicology. 7:193–197; 1983.

    CAS  Google Scholar 

  15. Kruse, K.L. Heat and water transport dynamics in the respiratory tract (M.S. thesis). Cleveland, Case Western Reserve University; 1981.

    Google Scholar 

  16. McEvoy, R.D.; Davies, N.J.H.; Mannino, F.L.; Prutow, R.J.; Schumacker, P.T.; Wagner, P.D.; West, J.B. Pulmonary gas exchange during high-frequency ventilation. J. Appl. Physiol.:Respirat. Environ. Exercise Physiol. 52:1278–1287; 1982.

    CAS  Google Scholar 

  17. McFadden, E.R.; Pichurko, B.M.; Bowman, H.F.; Ingenito, E.; Burno, S.; Dowling, N.; Solway, J. Thermal mapping of the airways in humans, airway temperature during respiration. J. Appl. Physiol. 58:564–570; 1985.

    PubMed  Google Scholar 

  18. Netter, F.H. The CIBA collection of medical illustrations, vol. 7, respiratory system. Summit, NJ: Ciba Pharmaceutical Company; 1979.

    Google Scholar 

  19. Reid, R.C.; Sherwood, T.K.; Prausnitz, J.M. The properties of gases and liquids, 3rd ed. New York: McGraw-Hill; 1980.

    Google Scholar 

  20. Robertson, H.T.; Coffey, R.L.; Standaert, T.A.; Truog, W.E. Respiratory and inert gas exchange during high-frequency ventilation. J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52:683–689; 1982.

    CAS  Google Scholar 

  21. Saidel, G.M.; Kruse, K.L.; Primiano, F.P., Jr. Model simulation of heat and water transport dynamics in an airway. J. Biomech. Eng. 105:189–193; 1983.

    Google Scholar 

  22. Solway, J.; Pichurko, B.M.; Ingenito, E.P.; McFadden, E.R., Jr.; Fanta, C.H.; Ingram, R.H., Jr.; Drazen, J.M. Breathing pattern affects airway wall temperature during cold air hyperpnea in humans. Am. Rev. Respir. Dis. 132:853–857; 1985.

    CAS  PubMed  Google Scholar 

  23. Tam, P.Y.; Verdugo, P. Control of mucus hydration as a donnan equilibrium process. Nature, 292:340–342; 1981.

    CAS  PubMed  Google Scholar 

  24. Treybal, R.E. Mass transfer operations. New York: McGraw-Hill; 1980.

    Google Scholar 

  25. Tsu, M.E. Mathematical and experimental modeling of heat, water, and soluble exchange in the trachea (M.S. thesis), Seattle, University of Washington; 1986.

    Google Scholar 

  26. Vander, A.J.; Sherman, J.H.; Luciano, D.S. Human physiology: mechanisms of body function. New York: McGraw-Hill; 1985.

    Google Scholar 

  27. Varene, P.; Ferrus, L.; Manier, G.; Gire, J. Heat and water respiratory exchange comparison between mouth and nose breathing in humans. Clinical Physiol., 6:405–414, 1986.

    CAS  Google Scholar 

  28. Verdugo, P. Hydration kinetics of exocytosed mucins in cultured secretory cells of the rabbit trachea: a new model. In: Nugent, J.; O'Conne, M., eds. Mucus and mucosa. London: Pittman; 1984, pp. 212–225.

    Google Scholar 

  29. Wagner, P.D., Saltzman, H.A.; West, J.B. Measurement of continuous distribution of ventilation-perfusion ratio: theory. J. Appl. Physiol. 36:588–599; 1974.

    CAS  PubMed  Google Scholar 

  30. Weibel, E. Morphometry of the human lung. New York: Springer-Verlag, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by Grant No. HL24163 of the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsu, M.E., Babb, A.L., Ralph, D.D. et al. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study. Ann Biomed Eng 16, 547–571 (1988). https://doi.org/10.1007/BF02368015

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368015

Keywords

Navigation