Skip to main content
Log in

Estimation of Viscous Dissipative Stresses Induced by a Mechanical Heart Valve Using PIV Data

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Among the clinical complications of mechanical heart valves (MHVs), hemolysis was previously thought to result from Reynolds stresses in turbulent flows. A more recent hypothesis suggests viscous dissipative stresses at spatial scales similar in size to red blood cells may be related to hemolysis in MHVs, but the resolution of current instrumentation is insufficient to measure the smallest eddy sizes. We studied the St. Jude Medical (SJM) 27 mm valve in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with particle image velocimetry (PIV). Assuming a dynamic equilibrium assumption between the resolved and sub-grid-scale (SGS) energy flux, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields and the SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then the viscous dissipative stresses were estimated. Our results showed Reynolds stresses up to 80 N/m2 throughout the cardiac cycle, and viscous dissipative stresses below 12 N/m2. The viscous dissipative stresses remain far below the threshold of red blood cell hemolysis, but could potentially damage platelets, implying the need for further study in the phenomenon of MHV hemolytic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abdallah, S. A., C. S. Su, and N. H. C. Hwang. Dynamic performance of heart valve prostheses and the testing loop characteristics. ASAIO Trans. 29:296–300, 1983.

    CAS  Google Scholar 

  2. Bacher, R. P., and M. C. Williams. Hemolysis in capillary flow. J. Lab. Clin. Med. 76:485–496, 1970.

    CAS  PubMed  Google Scholar 

  3. Baldwin, J. T., S. Deutsch, H. L. Petrie, and J. M. Tarbell. Determination of principal Reynolds stresses in pulsatile flows after elliptical filtering of discrete velocity measurements. J. Biomech. Eng. 115:396–403, 1993.

    Article  CAS  PubMed  Google Scholar 

  4. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35(12):1533–1540, 2002.

    Article  CAS  PubMed  Google Scholar 

  5. Chandran, K. B., G. N. Cabell, B. Khalighi, and C. J. Chen. Laser anemometry measurements of pulsatile flow past aortic valve prostheses. J. Biomech. 16(10):865–873, 1983.

    Article  CAS  PubMed  Google Scholar 

  6. Clark, R. A., J. H. Ferziger, and W. C. Reynolds. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91:1–16, 1979.

    Article  Google Scholar 

  7. Dasi, L. P., L. Ge, H. A. Simon, F. Sotiropoulos, and A. P. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19:067105, 2007.

    Article  Google Scholar 

  8. Deardorff, J. D. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41:453–480, 1969.

    Article  Google Scholar 

  9. Ellis, J. T., T. M. Wick, and A. P. Yoganathan. Prosthesis-induced hemolysis: mechanisms and quantification of shear stress. J. Heart Valve Dis. 7:376–386, 1998.

    CAS  PubMed  Google Scholar 

  10. Figlio, R. S., and T. J. Mueller. On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in vitro measurements. J. Biomech. 103:83–90, 1981.

    Article  Google Scholar 

  11. Forstrom, R. J. A new measure of erythrocyte membrane strength: the jet fragility test. PhD thesis, University of Minnesota, 1969.

  12. Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Renolds vs. viscous stresses. Ann. Biomed. Eng. 36:276–297, 2008.

    Article  PubMed  Google Scholar 

  13. Ge, L., H. L. Leo, F. Sotiropoulos, and A. P. Yoganathan. Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J. Biomech. Eng. Trans. ASME 127(5):782–797, 2005.

    Article  Google Scholar 

  14. Giersiepen, M., L. J. Wurzinger, R. Opitz, and H. Reul. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int. J. Artif. Organs 13:300–306, 1990.

    CAS  PubMed  Google Scholar 

  15. Grigioni, M., P. Caprari, A. Tarzia, and G. D’Avenio. Prosthetic heart valves’ mechanical loading of red blood cells in patients with hereditary membrane defects. J. Biomech. 38(8):1557–1565, 2005.

    Article  PubMed  Google Scholar 

  16. Grigioni, M., C. Daniele, G. D’Avenio, and V. Barbaro. A discussion on the threshold limit for hemolysis related to Reynolds shear stress. J. Biomech. 32(10):1107–1112, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Gu, L., and A. S. William. Evaluation of computational models for hemolysis estimation. ASAIO J. 51:202–207, 2005.

    Article  PubMed  Google Scholar 

  18. Hanle, D. D., E. C. Harrison, A. P. Yoganathan, and W. H. Corcoran. Turbulence downstream from the Ionescu-Shiley bioprosthesis in steady and pulsatile flow. Med. Biol. Eng. Comput. 25:645–649, 1987.

    Article  CAS  PubMed  Google Scholar 

  19. Hellums, J. D. Whitaker lecture: biorheology in thrombosis research. Ann. Biomed. Eng. 22(5):445–455, 1994.

    Article  CAS  PubMed  Google Scholar 

  20. Hellums, J. D., and C. H. Brown. Blood cell damage by mechanical forces. In: Cardiovascular Flow Dynamics and Measurements, edited by N. H. C. Hwang, and N. A. Normann. Baltimore: University Park Press, 1977, p. 799.

    Google Scholar 

  21. Jones, S. A. A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage. Ann. Biomed. Eng. 23:21–28, 1995.

    Article  CAS  PubMed  Google Scholar 

  22. King, M. J., J. Corden, T. David, and J. Fisher. A threedimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J. Biomech. 29(5):609–618, 1996.

    Article  CAS  PubMed  Google Scholar 

  23. Leverett, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stress. Biophys. J. 12:257–273, 1972.

    Article  CAS  PubMed  Google Scholar 

  24. Lim, W. L., Y. T. Chew, T. C. Chew, and H. T. Low. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34(11):1417–1427, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, J. S., P. C. Lu, and S. H. Chu. Turbulence characteristics downsream of bileaflet aortic valva prostheses. J. Biomech. Eng. 122:118–124, 2000.

    Article  CAS  PubMed  Google Scholar 

  26. Liu, S., C. Menenveau, and J. Katz. On the properties of similarity subgrid-scale models as deduced from measurements in a turbulence jet. J. Fluid Mech. 275:83–119, 1994.

    Article  Google Scholar 

  27. Lo, C. W., P. C. Lu, J. S. Liu, C. P. Li, and N. H. C. Hwang. Squeeze flow measurements in mechanical heart valves. ASAIO J. 54(2):156–162, 2008.

    Article  PubMed  Google Scholar 

  28. Lu, P. C., H. C. Lai, and J. S. Liu. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J. Biomech. 34(10):1361–1364, 2001.

    Article  CAS  PubMed  Google Scholar 

  29. Nevaril, C. G., E. C. Lynch, C. P. Alfrey, and J. D. Hellums. Erythrocyte damage and destruction induced by shearing stress. J. Lab. Clin. Med. 71:784–790, 1968.

    CAS  PubMed  Google Scholar 

  30. Nyboe, C., J. A. Funder, M. H. Smerup, H. Nygaard, and J. M. Hasenkam. Turbulent stress measurements downstream of three bileaflet heart valve designs in pigs. Eur. J. Cardio-Thorac. Surg. 29:1008–1013, 2006.

    Article  Google Scholar 

  31. Nygaard, H., M. Giersiepen, J. M. Hasenkam, H. Reul, P. K. Paulsen, P. E. Rovsing, and D. Westphal. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro. J. Biomech. 25:429–440, 1992.

    Article  CAS  PubMed  Google Scholar 

  32. Nygaard, H., P. K. Paulsen, J. M. Hasenkam, E. M. Pedersen, and P. E. Rovsing. Turbulent stresses downstream of three mechanical aortic valve prostheses in human beings. J. Thorac. Cardiovasc. Surg. 107:438–446, 1994.

    CAS  PubMed  Google Scholar 

  33. Quinlan, N. J., and P. N. Dooley. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35:1347–1356, 2007.

    Article  PubMed  Google Scholar 

  34. Rooney, J. A. Hemolysis near an ultrasonically pulsating gas bubble. Science 169:869–871, 1970.

    Article  CAS  PubMed  Google Scholar 

  35. Sallam, A. H., and N. H. C. Hwang. Human red blood cell hemolysis in turbulent shear flow: contributions of Reynolds shear stresses. Biorheology 21:783–797, 1984.

    CAS  PubMed  Google Scholar 

  36. Schoephoerster, R. T., and K. B. Chandran. Velocity and turbulence measurements past mitral valve prostheses in a model left ventricle. J. Biomech. 24:549–562, 1991.

    Article  CAS  PubMed  Google Scholar 

  37. Sheng, J., H. Meng, and R. O. Fox. A large eddy PIV method for turbulence dissipation rate estimation. Chem. Eng. Sci. 55(20):4423–4434, 2000.

    Article  CAS  Google Scholar 

  38. Smagorinsky, J. General circulation experiments with the primitive equation I the basic experiment. Mon. Weather Rev. 91:99–164, 1963.

    Article  Google Scholar 

  39. Sutera, S. P., P. A. Croce, and M. H. Mehrjardi. Hemolysis and subhemolytic alterations of human RBC induced by turbulent shear flow. Trans. Am. Soc. Artif. Intern. Organs 18:335–341, 1972.

    CAS  PubMed  Google Scholar 

  40. Sutera, S. P., and M. H. Mehrjardi. Deformation and fragmentation of human red blood cells in turbulent shear flow. Biophys. J. 15(1):1–10, 1975.

    Article  CAS  PubMed  Google Scholar 

  41. Tennekes, H., and J. L. Lumley. A First Course in Turbulence. Cambridge: MIT Press, 1972, 300 pp.

    Google Scholar 

  42. Travis, B. R., T. D. Christensen, M. D. Morten Smerup, M. S. Olsen, J. M. H. MD, and M. S. Hans Nygaard. An in vivo method for measuring turbulence in mechanical prosthesis leakage jets. J. Biomech. Eng. 126:26–35, 2004.

    Article  PubMed  Google Scholar 

  43. Wilcox, D. C. Large eddy simulation. In: Turbulence Modeling for CFD, edited by D. C. Wilcox. La Canada: DCW Industries Inc., 2000, pp. 386–395.

    Google Scholar 

  44. Williams, A. R., D. E. Hughes, and W. L. Nyborg. Hemolysis near a transversely oscillating wire. Science 169:871–873, 1970.

    Article  PubMed  Google Scholar 

  45. Yoganathan, A. P., W. H. Corcoran, E. C. Harrison, and J. R. Carl. The Bjork-Shiley aortic valve-prosthesis: flow characteristics, thrombus formation and tissue overgrowth. Circulation 58:70–76, 1978.

    CAS  PubMed  Google Scholar 

  46. Yoganathan, A. P., Z. He, and S. C. Jones. Fluid mechanics of heart valves. Ann. Rev. Biomed. Eng. 6:331–362, 2004.

    Article  CAS  Google Scholar 

  47. Yoganathan, A. P., Y.-R. Woo, and H.-W. Sung. Turbulent shear stress measurements in the vicinity of aortic heart valve prostheses. J. Biomech. 19(6):433–442, 1986.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of the Republic of China Grant NSC 96-2221-E-032-048-MY3 and we thank the Division of Medical Engineering, National Health Research Institutes of the Republic of China for providing their technical assistance and primary laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Chien Lu.

Additional information

Associate Editor Julia E. Babensee oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CP., Lo, CW. & Lu, PC. Estimation of Viscous Dissipative Stresses Induced by a Mechanical Heart Valve Using PIV Data. Ann Biomed Eng 38, 903–916 (2010). https://doi.org/10.1007/s10439-009-9867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9867-y

Keywords

Navigation