Skip to main content
Log in

Use of a Novel Robotic Interface to Study Finger Motor Control

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stroke is the leading cause of permanent adult disability in the U.S., frequently resulting in chronic motor impairments. Rehabilitation of the upper limb, particularly the hand, is especially important as arm and hand deficits post-stroke limit the performance of activities of daily living and, subsequently, functional independence. Hand rehabilitation is challenging due to the complexity of motor control of the hand. New instrumentation is needed to facilitate examination of the hand. Thus, a novel actuated exoskeleton for the index finger, the FingerBot, was developed to permit the study of finger kinetics and kinematics under a variety of conditions. Two such novel environments, one applying a spring-like extension torque proportional to angular displacement at each finger joint and another applying a constant extension torque at each joint, were compared in 10 stroke survivors with the FingerBot. Subjects attempted to reach targets located throughout the finger workspace. The constant extension torque assistance resulted in a greater workspace area (p < 0.02) and a larger active range of motion for the metacarpophalangeal joint (p < 0.01) than the spring-like assistance. Additionally, accuracy in terms of reaching the target was greater with the constant extension assistance as compared to no assistance. The FingerBot can be a valuable tool in assessing various hand rehabilitation paradigms following stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barber, C. B., D. P. Dobkin, and H. T. Huhdanpaa. The Quickhull algorithm for convex hulls. ACM Trans. Math. Software 22:469–483, 1996.

    Article  Google Scholar 

  2. Beer, R. F., J. P. Dewald, M. L. Dawson, and W. Z. Rymer. Target-dependent differences between free and constrained arm movements in chronic hemiparesis. Exp. Brain Res. 156:458–470, 2004.

    Article  PubMed  Google Scholar 

  3. Canning, C. G., L. Ada, R. Adams, and N. J. O’Dwyer. Loss of strength contributes more to physical disability after stroke than loss of dexterity. Clin. Rehabil. 18:300–308, 2004.

    Article  PubMed  Google Scholar 

  4. Canning, C. G., L. Ada, and N. J. O’Dwyer. Abnormal muscle activation characteristics associated with loss of dexterity after stroke. J. Neurol. Sci. 176:45–56, 2000.

    Article  CAS  PubMed  Google Scholar 

  5. Chae, J., G. Yang, B. K. Park, and I. Labatia. Muscle weakness and cocontraction in upper limb hemiparesis: relationship to motor impairment and physical disability. Neurorehabil. Neural Repair 16:241–248, 2002.

    PubMed  Google Scholar 

  6. Cruz, E. G., and D. G. Kamper. Kinematics of point-to-point finger movements. Exp. Brain Res. 174:29–34, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Cruz, E. G., H. C. Waldinger, and D. G. Kamper. Kinetic and kinematic workspaces of the index finger following stroke. Brain 128:1112–1121, 2005.

    Article  CAS  PubMed  Google Scholar 

  8. Darling, W. G., and K. J. Cole. Muscle activation patterns and kinetics of human index finger movements. J. Neurophysiol. 63:1098–1108, 1990.

    CAS  PubMed  Google Scholar 

  9. Jack, D., R. Boian, A. S. Merians, M. Tremaine, G. C. Burdea, S. V. Adamovich, M. Recce, and H. Poizner. Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 9:308–318, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Kahn, L. E., P. S. Lum, W. Z. Rymer, and D. J. Reinkensmeyer. Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J. Rehabil. Res. Dev. 43:619–630, 2006.

    Article  PubMed  Google Scholar 

  11. Kamper, D. G., E. G. Cruz, and M. P. Siegel. Stereotypical fingertip trajectories during grasp. J. Neurophysiol. 90:3702–3710, 2003.

    Article  CAS  PubMed  Google Scholar 

  12. Kamper, D. G., H. C. Fischer, E. G. Cruz, and W. Z. Rymer. Weakness is the primary contributor to finger impairment in chronic stroke. Arch. Phys. Med. Rehabil. 87:1262–1269, 2006.

    Article  PubMed  Google Scholar 

  13. Kamper, D. G., and W. Z. Rymer. Quantitative features of the stretch response of extrinsic finger muscles in hemiparetic stroke. Muscle Nerve 23:954–961, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Lang, C. E., and M. H. Schieber. Human finger independence: limitations due to passive mechanical coupling versus active neuromuscular control. J. Neurophysiol. 92:2802–2810, 2004.

    Article  PubMed  Google Scholar 

  15. Li, Z. M., G. Davis, N. P. Gustafson, and R. J. Goitz. A robot-assisted study of intrinsic muscle regulation on proximal interphalangeal joint stiffness by varying metacarpophalangeal joint position. J. Orthop. Res. 24:407–415, 2006.

    Article  CAS  PubMed  Google Scholar 

  16. Mali, U., N. Goljar, and M. Munih. Application of haptic interface for finger exercise. IEEE Trans. Neural Syst. Rehabil. Eng. 14:352–360, 2006.

    Article  PubMed  Google Scholar 

  17. Mallon, W. J., H. R. Brown, and J. A. Nunley. Digital ranges of motion: normal values in young adults. J. Hand. Surg. [Am.] 16:882–887, 1991.

    Article  CAS  Google Scholar 

  18. Patten, C., J. Lexell, and H. E. Brown. Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy. J. Rehabil. Res. Dev. 41:293–312, 2004.

    Article  PubMed  Google Scholar 

  19. Patton, J. L., M. E. Stoykov, M. Kovic, and F. A. Mussa-Ivaldi. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp. Brain Res. 168:368–383, 2006.

    Article  PubMed  Google Scholar 

  20. Powers, R. K., J. Marder-Meyer, and W. Z. Rymer. Quantitative relations between hypertonia and stretch reflex threshold in spastic hemiparesis. Ann. Neurol. 23:115–124, 1988.

    Article  CAS  PubMed  Google Scholar 

  21. Rosamond, W., K. Flegal, G. Friday, K. Furie, A. Go, K. Greenlund, N. Haase, M. Ho, V. Howard, B. Kissela, S. Kittner, D. Lloyd-Jones, M. McDermott, J. Meigs, C. Moy, G. Nichol, C. J. O’Donnell, V. Roger, J. Rumsfeld, P. Sorlie, J. Steinberger, T. Thom, S. Wasserthiel-Smoller, and Y. Hong. Heart disease and stroke statistics—2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171, 2007.

    Article  PubMed  Google Scholar 

  22. Sanchez, R. J., J. Liu, S. Rao, P. Shah, R. Smith, T. Rahman, S. C. Cramer, J. E. Bobrow, and D. J. Reinkensmeyer. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Trans. Neural Syst. Rehabil. Eng. 14:378–389, 2006.

    Article  PubMed  Google Scholar 

  23. Spong, M. W., S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control. London: John Wiley & Sons, Inc, 2006.

    Google Scholar 

  24. Takahashi, C. D., L. Der-Yeghiaian, V. Le, R. R. Motiwala, and S. C. Cramer. Robot-based hand motor therapy after stroke. Brain 131:425–437, 2008.

    Article  PubMed  Google Scholar 

  25. Thom, T., N. Haase, W. Rosamond, V. J. Howard, J. Rumsfeld, T. Manolio, Z. J. Zheng, K. Flegal, C. O’Donnell, S. Kittner, D. Lloyd-Jones, D. C. Goff, Jr., Y. Hong, R. Adams, G. Friday, K. Furie, P. Gorelick, B. Kissela, J. Marler, J. Meigs, V. Roger, S. Sidney, P. Sorlie, J. Steinberger, S. Wasserthiel-Smoller, M. Wilson, and P. Wolf. Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113:e85–e151, 2006.

    Article  PubMed  Google Scholar 

  26. Thoroughman, K. A., and R. Shadmehr. Learning of action through adaptive combination of motor primitives. Nature 407:742–747, 2000.

    Article  CAS  PubMed  Google Scholar 

  27. Trombly, C. Occupational Therapy for Physical Dysfunction. Baltimore: Williams and Wilkins, 1989.

    Google Scholar 

  28. Wade, D. The Epidemiologically Based Needs Assessment Reviews, Vol. I. Oxford: Radcliffe Medical Press, pp. 111–255, 1994.

    Google Scholar 

  29. Wege, A., and A. Zimmerman. Electromyography sensor based control for a hand exoskeleton. In: IEEE International Conference on Robotics and Biomimetics, Sanya, China, 2007, pp. 1470–1475.

  30. Wolbrecht, E. T., V. Chan, D. J. Reinkensmeyer, and J. E. Bobrow. Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 16:286–297, 2008.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Coleman Foundation. We wish to thank Dr. Edward Colgate and Dr. Eric Perreault for their insightful recommendations regarding the design of the FingerBot and of the experiment and Mr. Dan Qiu for his examination of the sensitivity of the Jacobian matrix.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Kamper.

Appendix

Appendix

The Jacobian matrix (J) relating the three joint torques \( \left( {{\varvec{\tau}} = \left[ {\begin{array}{*{20}c} {{\varvec{\tau}}_{\mathbf{MCP}} } \\ {{\varvec{\tau}}_{\mathbf{PIP}} } \\ {{\varvec{\tau}}_{\mathbf{DIP}} } \\ \end{array} } \right]} \right) \) to the forces and moment \( \left( {{\mathbf{f}} = \left[ {\begin{array}{*{20}c} {{\mathbf{F}}_{\mathbf{x}} } \\ {{\mathbf{F}}_{\mathbf{y}} } \\ {{\varvec{\tau}}_{\mathbf{z}} } \\ \end{array} } \right]} \right) \) at the fingertip is given by Eq. A.1:

$$ J = \left[ {\begin{array}{*{20}c} { -\; l_{\text{P}} \sin \left( {\vartheta_{\text{P}} } \right) - l_{\text{M}} \sin \left( {\vartheta_{\text{P}} + \vartheta_{\text{M}} } \right) -\; l_{\text{D}} \sin \left( {\theta_{\text{P}} + \theta_{\text{M}} + \theta_{\text{D}} } \right)} & { -\; l_{\text{M}} \sin \left( {\vartheta_{\text{P}} + \vartheta_{\text{M}} } \right) -\; l_{\text{D}} \sin \left( {\theta_{\text{P}} + \theta_{\text{M}} + \theta_{\text{D}} } \right)} & { - l_{\text{D}} \sin \left( {\theta_{\text{P}} + \theta_{\text{M}} + \theta_{\text{D}} } \right)} \\ {l_{\text{P}} \cos \left( {\vartheta_{\text{P}} } \right) + l_{\text{M}} \cos \left( {\vartheta_{\text{P}} + \vartheta_{\text{M}} } \right) + l_{\text{D}} \cos \left( {\theta_{\text{P}} + \theta_{\text{M}} + \theta_{\text{D}} } \right)} & {l_{\text{M}} \cos \left( {\vartheta_{\text{P}} + \vartheta_{\text{M}} } \right) +\; l_{\text{D}} \cos \left( {\theta_{\text{P}} + \theta_{\text{M}} + \theta_{\text{D}} } \right)} & {l_{\text{D}} \cos \left( {\theta_{\text{P}} + \theta_{\text{M}} + \theta_{\text{D}} } \right)} \\ 1 & 1 & 1 \\ \end{array} } \right] $$
(A.1)

where, l P is the length of proximal finger segment, l M is the length of middle finger segment, l D is the length of distal finger segment, θP is the MCP flexion/extension angle, θM is the PIP flexion/extension angle, and θD is the DIP flexion/extension angle.

The joint torques are related to the fingertip forces/moment by:

$$ {\varvec{\tau}} = J^{\text{T}} {{f}} $$
(A.2)

Changes in the angle with respect to the fingertip of an applied force affects the joint torques generated. The changes are not uniform across the joints. For example, altering the force direction from 80° with respect to the long axis of the distal segment to 100° has minimal effect on the PIP and DIP torques, but has a significant effect on the MCP torque (Fig. A.1).

Figure A.1
figure 9

The torques resulting at each of the three finger joints from an input force of 5 N directed at the fingertip. Finger posture, in terms of (MCP, PIP, DIP) flexion joint angles, is (45°, 45°, 20°). Force direction refers to degrees between the input force vector and the vector described by the distal phalanx (0° denotes a force directed along the long axis of the distal phalanx toward the DIP joint). Positive torque signifies an extension torque

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, E.G., Kamper, D.G. Use of a Novel Robotic Interface to Study Finger Motor Control. Ann Biomed Eng 38, 259–268 (2010). https://doi.org/10.1007/s10439-009-9845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9845-4

Keywords

Navigation