Skip to main content
Log in

A Mathematical Model of Human Respiration at Altitude

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We developed a mathematical model of human respiration in the awake state that can be used to predict changes in ventilation, blood gases, and other critical variables during conditions of hypocapnia, hypercapnia and these conditions combined with hypoxia. Hence, the model is capable of describing ventilation changes due to the hypocapnic-hypoxia of high altitude. The basic model is that of Grodins et al. [Grodins, F. S., J. Buell, and A. J. Bart. J. Appl. Physiol. 22:260–276, 1967]. We updated the descriptions of (1) the effects of blood gases on cardiac output and cerebral blood flow, (2) acid–base balance in blood and tissues, (3) O2 and CO2 binding to hemoglobin and most importantly, (4) the respiratory-chemostat controller. The controller consists of central and peripheral sections. The central chemoceptor-induced ventilation response is simply a linear function of brain \(P_{\rm CO_2}\) above a threshold value. The peripheral response has both a linear term similar to that for the central chemoceptors, but dependent upon carotid body \(P_{\rm CO_2}\) and with a different threshold and a complex, nonlinear term that includes multiplication of separate terms involving carotid body \(P_{\rm O_2}\) and \(P_{\rm CO_2}.\) Together, these terms produce ‘dogleg’-shaped curves of ventilation plotted against \(P_{\rm CO_2}\) which form a fan-like family for different values of \(P_{\rm CO_2}.\) With this chemical controller, our model closely describes a wide range of experimental data under conditions of solely changes in \(P_{\rm CO_2}\) and for short-term hypoxia coupled with \(P_{\rm CO_2}\) changes. This model can be used to accurately describe changes in ventilation and respiratory gases during ascent and during short-term residence at altitude. Hence, it has great applicability to studying O2-delivery systems in aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Abbreviations

HCO3 :

Bicarbonate

C :

Content or concentration, L gas 100 L blood−1

CSF:

Cerebrospinal fluid

H :

Hematocrit, fractional

HbCO:

Carbamino hemoglobin

mM:

Concentration, millimoles L−1

MR:

Metabolic rate, mL min−1

P :

Gas partial pressure, torr

Q :

Blood flow, L min−1

RQ:

Respiratory Quotient

S :

Hemoglobin O2 saturation, fractional

SF:

Shunt fraction

T :

Respiratory threshold, torr

V :

Volume, L

\(\dot{V}\) :

Ventilation, L min−1

f :

Fraction

α:

Gas solubility, mM L blood−1

t :

time, s

A:

Alveolar

a:

Arterial

b:

Brain

bl:

Blood

cb:

Carotid body

D:

Deadspace

et:

End tidal

I:

Inspiratory (ventilation)

pl:

Plasma

rc:

Red blood cell

ti:

Tissue

T:

Tidal (volume)

v:

Venous

References

  1. Bellville J. W., Whipp B. J., Kaufman R. D., Swanson G. D., Aqleh K. A., Wiberg D. M. (1979) Central and Peripheral chemoreflex loop gain in normal and carotid-body-resected subjects. J. Appl. Physiol. 46:843–853

    PubMed  CAS  Google Scholar 

  2. Cohen P. J., Alexander S. C., Smith T. C., Reivich M., Wollman H. (1967) Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man. J. Appl. Physiol. 23:183–189

    PubMed  CAS  Google Scholar 

  3. Comroe J. H. Jr. (1965) Physiology of Respiration. Chicago, Year Book Medical Publishers

    Google Scholar 

  4. Cormack R. S., Cunningham D. J. C., Gee J. B. L. (1957) The effect of carbon dioxide on the respiratory response to want of oxygen in man. Quar. J. Exp. Physiol. Cog. Med. Sci. 42:303–319

    CAS  Google Scholar 

  5. Cullen D. J., Eger I. E. I. (1974) Cardiovascular effects of carbon dioxide in man. Anesthesiology 41:345–349

    Article  PubMed  CAS  Google Scholar 

  6. Cunningham D. J. C. (1974) The control system regulating breathing in man. Quar. Rev. Biophys. 6:433–483

    Article  Google Scholar 

  7. Cunningham, D. J. C., P. A. Robbins, and C. B. Wolff. Integration of respiratory responses to changes in alveolar partial pressures of CO2 and O2 and in arterial pH. In: Section 3: The Respiratory System, edited by A.P. Fishman. Bethesda: American Physiological Society, 1986, pp. 475–528

  8. Davenport H. W. (1958) The ABC of Acid-base Chemistry. Chicago, The University of Chicago Press

    Google Scholar 

  9. Dripps R. D., Comroe J. H. Jr. (1947) The respiratory and circulatory response of normal man to inhalation of 7.6 and 10.4 per cent CO2 with a comparison of the maximal ventilation produced by severe muscular exercise, inhalation of CO2 and maximum voluntary ventilation. Am. J. Physiol. 149:43–51

    CAS  PubMed  Google Scholar 

  10. Duffin J. (1972) A mathematical model of the chemoreflex control of ventilation. Resp. Physiol. 15:277–301

    Article  CAS  Google Scholar 

  11. Duffin J., Mohan R. M., Vasiliou P., Stephenson R., Mahamed S. (2000) A model of the chemoreflex control of breath in humans: model parameters measurement. Resp. Physiol. 120:13–26

    Article  CAS  Google Scholar 

  12. Easton P. A., Anthonisen N. R. (1988) Carbon dioxide effects on the ventilatory response to sustained hypoxia. J. Appl. Physiol. 64:1451–1456

    PubMed  CAS  Google Scholar 

  13. Easton P. A., Slykerman L. J., Anthonisen N. R. (1986) Ventilatory response to sustained hypoxia in normal adults. J. Appl. Physiol 61:906–911

    PubMed  CAS  Google Scholar 

  14. Easton P. A., Slykerman L. J., Anthonisen N. R. (1988) Recovery of the ventilatory response to hypoxia in normal adults. J. Appl. Physiol. 64: 521–528

    Article  PubMed  CAS  Google Scholar 

  15. Georgopoulos D., Bshouty Z., Younes M., Anthonisen N. R. (1990) Hypoxic exposure and activation of the afterdischarge mechanism in conscious humans. J. Appl. Physiol. 69:1159–1164

    PubMed  CAS  Google Scholar 

  16. Georgopoulos D., Walker S., Anthonisen N. R. (1990) Effect of sustained hypoxia on ventilatory response to CO2 in normal adults. J. Appl. Physiol. 68: 891–896

    PubMed  CAS  Google Scholar 

  17. Gray J. S. (1946) The multiple factor theory of the control of respiratory ventilation. Science 103:739–744

    Article  PubMed  CAS  Google Scholar 

  18. Grodins F. S., Buell J., Bart A. J. (1967) Mathematical analysis and digital simulation of the respiratory control system. J. Appl. Physiol. 22:260–276

    PubMed  CAS  Google Scholar 

  19. Grodins F. S., Gray J. S., Schroeder K. R., Norins A. L., Jones R. W. (1954) Respiratory responses to CO2 inhalation. A theoretical study of a nonlinear biological regulator. J. Appl. Physiol. 7:283–308

    PubMed  CAS  Google Scholar 

  20. Grodins F. S., Yamashiro S. M. (1978) Respiratory Function of the Lung and its Control. New York, Macmillan

    Google Scholar 

  21. Hall F. G. (1953) Cabon dioxide and respiratory regulation at altitude. J. Appl. Physiol. 5:603–606

    PubMed  CAS  Google Scholar 

  22. Hoffman C. E. Jr. Clark R. T., Jr. Brown E. B. (1946) Blood oxygen saturation and duration of consciousness in anoxia at high altitude. Am. J. Physiol. 145: 685–692

    CAS  Google Scholar 

  23. Izraeli S., Avgar D., Glikson M., Shochat U., Glovinsky Y., Ribak J. (1998) Determination of the ‘time of useful consciousness’ (TUC) in repeated exposures to simulated altitude of 25, 000 ft (7,620 m). Aviat. Space Environ. Med. 59:1103–1105

    Google Scholar 

  24. Kazemi H., Mithoefer J. C. (1963) CO2 dissociation curve of dog brain. Am. J. Physiol. 203:598–600

    Google Scholar 

  25. Khoo M. C. K., Kronauer R. E., Strohl K. P., Slutsky A. S. (1982) Factors inducing periodic breathing in humans: a general model. J. Appl. Physiol. 53:644–659

    PubMed  CAS  Google Scholar 

  26. Kolb J. C., Ainslie P. N., Ide K., Poulin M. J. (2004) Protocol to measure acute cerebrovascular and ventilatory responses to isocapnic hypoxia in humans. Resp. Physiol. Neurobiol. 141:191–199

    Article  Google Scholar 

  27. Liang P., Bascom D. A., Robbins P. A. (1997) Extended models of the ventilatory response to sustained isocapnic hypoxia. J. Appl. Physiol. 82:667–677

    PubMed  CAS  Google Scholar 

  28. Lloyd B. B., Cunningham D. J. C. (1963) A quantitative approach to the regulation of respiration. In: Cunningham D.J.C., Lloyd B.B. (eds.), The Regulation of Human Respiration. Oxford, Blackwell, pp. 331–349

    Google Scholar 

  29. Lobdell D. D. (1981) An invertible simple equation for computation of blood O2 dissociation relations. J.Appl.Physiol 50:971–973

    PubMed  CAS  Google Scholar 

  30. Longobardo G., Evangelisti C. J., Cherniack N. S. (2002) Effects of neural drives on breathing in the awake state in humans. Resp. Physiol. 129:317–333

    Article  Google Scholar 

  31. Nielsen M., Smith H. (1951) Studies on the regulation of respiration in acute hypoxia. Acta Physiol. Scand. 24:293–312

    Google Scholar 

  32. Patrick W., Webster K., Puddy A., SAnii R., Younes M. (1995) Respiratory response to CO2 in the hypocapnic range in awake humans. J. Appl. Physiol. 79:2058–2068

    PubMed  CAS  Google Scholar 

  33. Poulin M. J., Liang P. -J., Robbins P. A. (1996) Dynamics of the cerebral blood flow response to step changes in end-tidal PCO2 and PO2 in humans. J. Appl. Physiol 81:1084–1095

    PubMed  CAS  Google Scholar 

  34. Rahn H., Otis A. (1949) Man’s respiratory response during and after acclimatization to high altitudes. Am.J.Physiol 157:445–462

    CAS  PubMed  Google Scholar 

  35. Reivich M. (1964) Arterial PCO2 and cerebral hemodynamics. Am. J. Physiol. 206: 25–35

    PubMed  CAS  Google Scholar 

  36. Reynolds W. J., Milhorn H. T., Jr. (1973) Transient ventilatory response to hypoxia with and without controlled alveolar PCO2. J. Appl. Physiol. 35:187–196

    PubMed  CAS  Google Scholar 

  37. Reynolds W. J., Milhorn H. T. Jr., Holloman G. H., Jr. (1972) Transient ventilatory response to graded hypercapnia in man. J.Appl.Physiol 33:47–54

    PubMed  CAS  Google Scholar 

  38. Richardson D. W., Kontos H. A., Raper A. J., Patterson J. L. Jr. (1972) Systemic circulatory responses to hypocapnia in man. Am.J.Physiol. 223:1308–1312

    PubMed  CAS  Google Scholar 

  39. Richardson D. W., Kontos H. A., Shapiro W., Patterson J. L. Jr. (1966) Role of hypocapnia in the circulatory response to acute hypoxia in man. J. Appl. Physiol. 21:22–26

    PubMed  CAS  Google Scholar 

  40. Richardson D. W., Wasserman A. J., Patterson J. L. Jr. (1961) General and regional circulatory response to changes in blood pH and carbon dioxide tension. J. Clin. Invest. 40:31–43

    PubMed  CAS  Google Scholar 

  41. Severinghaus J. W. (1976) Proposed standard determination of ventilatory responses to hypoxia and hypercapnia in man. Chest 70(suppl 1):129–131

    PubMed  CAS  Google Scholar 

  42. Severinghaus J. W. (1979) Simple, accurate equations for human blood O2 dissociation computations. J. Appl. Physiol. 46:599–602

    PubMed  CAS  Google Scholar 

  43. Shapiro W., Wasserman A. J., Baker J. P., Patterson J. L. Jr. (1970) Cerebrovascular response to acute hypoxia and eucapnic hypoxia in normal man. J. Clin. Invest. 49:2362–2368

    Article  PubMed  CAS  Google Scholar 

  44. Somogyi R. B., Preiss D., Vesely A., Fisher J. A., Duffin J. (2005) Changes in respiratory control after 5 days at altitude. Resp. Physiol. Neurobiol. 145:41–52

    Article  Google Scholar 

  45. Takahashi E., Doi K. (1993). Destabilization of the respiratory control by hypoxic ventilatory depressions: a model analysis. Jap.J.Physiol 43:612

    Article  Google Scholar 

  46. Topor Z. L., Pawlicki M., Remmers J. E. (2004) A computational model of the human respiratory control system responses to hypoxia and hypercapnia. Ann. Biomed. Eng. 32:1530–1545

    Article  PubMed  Google Scholar 

  47. Ursino M., Magosso E., Avanzolini G. (2001) An integrated model of the human ventilatory control system: the response to hypercapnia. Clin. Physiol. 21:447–464

    Article  PubMed  CAS  Google Scholar 

  48. Ursino M., Magosso E., Avanzolini G. (2001) An integrated model of the human ventilatory control system: the response to hypoxia. Clin. Physiol. 21:465–477

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this paper to Dr. Fred Grodins first Chair of the Department of Biomedical Engineering at the University of Southern California. One of us (MBW) was a junior faculty member in this Department from 1967 to 1970. Although MBW was not involved at that time with respiratory physiology, he came away with a great appreciation for Fred’s wisdom and his ability to simplify complex problems. We hope that Fred would approve of this work and see it as a significant contribution to understanding the control of respiration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Bernard Wolf.

Appendix

Appendix

Figure A1
figure 15

Cardiac index data (solid circles) from Richardson et al.,39 upper panel, and the ratio of brain blood flow to its resting value (lower panel) from various sources (open symbols) are plotted against \(P_{\rm aO_2}.\) The dashed lines are sigmoidal fits to the data. In Eq. (6), the fit was scaled so that cardiac output was unchanged at resting \(P_{\rm AO_2}\)

Figure A2
figure 16

Tidal volume is shown as a function of total ventilation. Experimental data (symbols) are from various sources.9,1216,36,37 The curve fit (Eq. 13) is shown by the dashed line

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, M.B., Garner, R.P. A Mathematical Model of Human Respiration at Altitude. Ann Biomed Eng 35, 2003–2022 (2007). https://doi.org/10.1007/s10439-007-9361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9361-3

Keywords

Navigation