Skip to main content

What Is the Point of the Peak? Assessing Steady-State Respiratory Chemoreflex Drive in High Altitude Field Studies

  • Conference paper
  • First Online:
Arterial Chemoreceptors

Abstract

Measurements of central and peripheral respiratory chemoreflexes are important in the context of high altitude as indices of ventilatory acclimatization. However, respiratory chemoreflex tests have many caveats in the field, including considerations of safety, portability and consistency. This overview will (a) outline commonly utilized tests of the hypoxic ventilatory response (HVR) in humans, (b) outline the caveats associated with a variety of peak response HVR tests in the laboratory and in high altitude fieldwork contexts, and (c) advance a novel index of steady-state chemoreflex drive (SS-CD) that addresses the many limitations of other chemoreflex tests. The SS-CD takes into account the contribution of central and peripheral respiratory chemoreceptors, and eliminates the need for complex equipment and transient respiratory gas perturbation tests. To quantify the SS-CD, steady-state measurements of the pressure of end-tidal (PET)CO2 (Torr) and peripheral oxygen saturation (SpO2; %) are used to quantify a stimulus index (SI; PETCO2/SpO2). The SS-CD is then calculated by indexing resting ventilation (L/min) against the SI. SS-CD data are subsequently reported from 13 participants during incremental ascent to high altitude (5160 m) in the Nepal Himalaya. The mean SS-CD magnitude increased approximately 96% over 10 days of incremental exposure to hypobaric hypoxia, suggesting that the SS-CD tracks ventilatory acclimatization. This novel SS-CD may have future utility in fieldwork studies assessing ventilatory acclimatization during incremental or prolonged stays at altitude, and may replace the use of complex and potentially confounded transient peak response tests of the HVR in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelova PR, Kasymov V, Christie I, Sheikhbahaei S, Turovsky E, Marina N, Korsak A, Zwicker J, Teschemacher AG, Ackland GL, Funk GD, Kasparov S, Abramov AY, Gourine AV (2015) Functional oxygen sensitivity of astrocytes. J Neurosci 35(29):10460–10473

    Article  CAS  Google Scholar 

  • Berkenbosch A, Olievier CN, De Goede J (1995) Respiratory responses to hypoxia: peripheral and central effects. In: Semple SJG, Adams L, Whipp BJ (eds) Modeling and control of ventilation. Plenum Press, New York, pp 251–256

    Chapter  Google Scholar 

  • Bruce CD, Steinback CD, Chauhan UV, Pfoh JR, Abrosimova M, Vanden Berg ER, Skow RJ, Davenport MH, Day TA (2016) Quantifying cerebrovascular reactivity in anterior and posterior cerebral circulations during voluntary breath holding. Exp Physiol 101(12):1517–1527

    Article  CAS  Google Scholar 

  • Chua TP, Coats AJ (1995) The reproducibility and comparability of tests of the peripheral chemoreflex: comparing the transient hypoxic ventilatory drive test and the single-breath carbon dioxide response test in healthy subjects. Eur J Clin Investig 25:887–892

    Article  CAS  Google Scholar 

  • Curran AK, Rodman JR, Eastwood PR, Henderson KS, Dempsey JA, Smith CA (2000) Ventilatory responses to specific CNS hypoxia in sleeping dogs. J Appl Physiol (1985) 88(5):1840–1852

    Article  CAS  Google Scholar 

  • Day TA, Wilson RJA (2009) A negative interaction between central and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude. J Physiol 587(Pt 4):883–896

    Article  CAS  Google Scholar 

  • Dejours P (1962) Chemoreflexes in breathing. Physiol Rev 42:335–358

    Article  CAS  Google Scholar 

  • Dempsey JA, Powell FL, Bisgard GE, Blain GM, Poulin MJ, Smith CA (2014) Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia. J Appl Physiol (1985) 116(7):858–866

    Article  Google Scholar 

  • Duffin J (2011) Measuring the respiratory chemoreflexes in humans. Respir Physiol Neurobiol 177(2):71–79

    Article  CAS  Google Scholar 

  • Edelman NH, Epstein PE, Lahiri S, Cherniack NS (1973) Ventilatory responses to transient hypoxia and hypercapnia in man. Respir Physiol 17:302–314

    Article  CAS  Google Scholar 

  • Eger EI 2nd, Kellogg RH, Mines AH, Lima-Ostos M, Morrill CG, Kent DW (1968) Influence of CO2 on ventilatory acclimatization to altitude. J Appl Physiol 24(5):607–615

    Article  Google Scholar 

  • Fan JL, Burgess KR, Basnyat R, Thomas KN, Peebles KC, Lucas SJ, Lucas RA, Donnelly J, Cotter JD, Ainslie PN (2010) Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2. J Physiol 588(Pt 3):539–549

    Article  CAS  Google Scholar 

  • Fitzgerald RS, Parks DC (1971) Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir Physiol 12:218–229

    Article  CAS  Google Scholar 

  • Forster HV, Smith CA (2010) Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. J Appl Physiol 108:989–994

    Article  CAS  Google Scholar 

  • Forster HV, Dempsey JA, Birnbaum ML, Reddan WG, Thoden J, Grover RF, Rankin J (1971) Effect of chronic exposure to hypoxia on ventilatory response to CO2 and hypoxia. J Appl Physiol 31(4):586–592

    Article  CAS  Google Scholar 

  • Gourine AV, Funk GD (2017) On the existence of a central respiratory oxygen sensor. J Appl Physiol (1985) 123(5):1344–1349

    Article  Google Scholar 

  • Guyenet PG, Bayliss DA (2015) Neural control of breathing and CO2 homeostasis. Neuron 87(5):946–961

    Article  CAS  Google Scholar 

  • Hoiland RL, Ainslie PN, Wildfong KW, Smith KJ, Bain AR, Willie CK, Foster G, Monteleone B, Day TA (2015) Indomethacin-induced impairment of regional cerebrovascular reactivity: implications for respiratory control. J Physiol 593:1291–1306

    Article  CAS  Google Scholar 

  • Honda Y (1995) Ventilatory depression during mild hypoxia in adult humans. Jpn J Physiol 45:947–959

    Article  CAS  Google Scholar 

  • Krapf R, Beeler I, Hertner D, Hulter HN (1991) Chronic respiratory alkalosis. The effect of sustained hyperventilation on renal regulation of acid-base equilibrium. N Engl J Med 324(20):1394–1401

    Article  CAS  Google Scholar 

  • Lahiri S, DeLaney RG (1975) Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir Physiol 24:249–266

    Article  CAS  Google Scholar 

  • Loeschchke HH, Gertz KH (1958) Effect of oxygen pressure in inspired air on respiratory activity of the human, tested under the constant behavior of alveolar carbon dioxide pressure. Pflugers Arch Gesamte Physiol Menschen Tiere 267(5):460–477

    Article  CAS  Google Scholar 

  • Long WO, Giesbrecht GG, Anthonisen NR (1993) Ventilatory response to moderate hypoxia in awake chemodenervated cats. J Appl Physiol 74:805–810

    Article  CAS  Google Scholar 

  • LĂ³pez-Barneo J, GonzĂ¡lez-RodrĂ­guez P, Gao L, FernĂ¡ndez-AgĂ¼era MC, Pardal R, Ortega-SĂ¡enz P (2016) Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 310(8):C629–C642

    Article  Google Scholar 

  • Milledge JS, Thomas PS, Beeley JM, English JS (1988) Hypoxic ventilatory response and acute mountain sickness. Eur Respir J 1(10):948–951

    CAS  PubMed  Google Scholar 

  • Nielsen M, Smith H (1952) Studies on the regulation of respiration in acute hypoxia; with a appendix on respiratory control during prolonged hypoxia. Acta Physiol Scand 24:293–313

    Article  CAS  Google Scholar 

  • Pedersen MEF, Fatemian M, Robbins PA (1999) Identification of fast and slow ventilatory responses to carbon dioxide under hypoxic and hyperoxic conditions in humans. J Physiol 521(1):273–287

    Article  CAS  Google Scholar 

  • Pfoh JR, Tymko MM, Abrosimova M, Boulet LM, Foster GE, Bain AR, Ainslie AN, Steinback CD, Bruce CD, Day TA (2016) Comparing and characterizing transient and steady-state tests of the peripheral chemoreflex in humans. Exp Physiol 101:432–447

    Article  Google Scholar 

  • Pfoh JR, Steinback CD, Vanden Berg ER, Bruce CD, Day TA (2017) Assessing chemoreflexes and oxygenation in the context of acute hypoxia: implications for field studies. Respir Physiol Neurobiol 246:67–75

    Article  Google Scholar 

  • Poulin MJ, Robbins PA (1998) Influence of cerebral blood flow on the ventilatory response to hypoxia in humans. Exp Physiol 83:95–106

    Article  CAS  Google Scholar 

  • Powell FL (2006) Lake Louise consensus methods for measuring the hypoxic ventilatory response. In: Roach RC et al (eds) Hypoxia and exercise. Springer, New York, pp 271–276

    Chapter  Google Scholar 

  • Powell FL (2012) Measuring the respiratory chemoreflexes in humans by J. Duffin. Respir Physiol Neurobiol 181(1):44–45

    Article  Google Scholar 

  • Powell FL, Milsom WK, Mitchell GS (1998) Time domains of the hypoxic ventilatory response. Respir Physiol 112:123–134

    Article  CAS  Google Scholar 

  • Rebuck AS, Campbell EJ (1974) A clinical method for assessing the ventilatory response to hypoxia. Am Rev Respir Dis 109(3):345–350

    CAS  PubMed  Google Scholar 

  • Robbins PA (1995) Hypoxic ventilatory decline: site of action (Commentary). J Appl Physiol 79:373–374

    Article  CAS  Google Scholar 

  • Sato M, Severinghaus JW, Powell FL, Xu FD, Spellman MJ Jr (1992) Augmented hypoxic ventilatory response in men at altitude. J Appl Physiol (1985) 73(1):101–107

    Article  CAS  Google Scholar 

  • Smith CA, Bisgard GE, Nielsen AM, Daristotle L, Kressin NA, Forster HV, Dempsey JA (1986) Carotid bodies are required for ventilatory acclimatization to chronic hypoxia. J Appl Physiol (1985) 60(3):1003–1010

    Article  CAS  Google Scholar 

  • Smith CA, Rodman JR, Chenuel BJ, Henderson KS, Dempsey JA (2006) Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors. J Appl Physiol 100:13–19

    Article  CAS  Google Scholar 

  • Smith CA, Forster HV, Blain GM, Dempsey JA (2010) An interdependent model of central/peripheral chemoreception: evidence and implications for ventilatory control. Respir Physiol Neurobiol 173:288–297

    Article  Google Scholar 

  • Steinback CD, Poulin MJ (2007) Ventilatory responses to isocapnic and poikilocapnic hypoxia in humans. Respir Physiol Neurobiol 155:104–113

    Article  Google Scholar 

  • Steinback CD, Poulin MJ (2008) Cardiovascular and cerebrovascular responses to acute isocapnic and poikilocapnic hypoxia in humans. J Appl Physiol 104:482–489

    Article  Google Scholar 

  • Steinback CD, Salzer D, Medeiros PJ, Kowalchuk J, Shoemaker K (2009) Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic function. Am J Physiol Regul Integr Comp Physiol 296:R402–R410

    Article  CAS  Google Scholar 

  • Teppema LJ, Dahan A (2010) The ventilatory response to hypoxia in mammals: mechanisms, measurement, and analysis. Physiol Rev 90(2):675–754

    Article  CAS  Google Scholar 

  • Weil JV, Byrne-Quinn E, Sodal IE, Friesen WO, Underhill B, Filley GF, Grover RF (1970) Hypoxic ventilatory drive in normal man. J Clin Invest 49:1061–1072

    Article  CAS  Google Scholar 

  • Wilson RJ, Day TA (2013) CrossTalk opposing view: peripheral and central chemoreceptors have hypoadditive effects on respiratory motor output. J Physiol 591(18):4355–4357

    Article  CAS  Google Scholar 

  • Wilson RJ, Teppema LJ (2016) Integration of central and peripheral respiratory chemoreflexes. Compr Physiol 6(2):1005–1041

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Natural Sciences and Engineering Research Council of Canada Discovery grant (TAD) and an MRU sabbatical (TAD). We would like to acknowledge and thank ADInstruments for their support of this project. We are grateful to our research participants for their time and effort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor A. Day .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruce, C.D. et al. (2018). What Is the Point of the Peak? Assessing Steady-State Respiratory Chemoreflex Drive in High Altitude Field Studies. In: Gauda, E., Monteiro, M., Prabhakar, N., Wyatt, C., Schultz, H. (eds) Arterial Chemoreceptors. Advances in Experimental Medicine and Biology, vol 1071. Springer, Cham. https://doi.org/10.1007/978-3-319-91137-3_2

Download citation

Publish with us

Policies and ethics