Skip to main content
Log in

A Quantitative Model of Gastric Smooth Muscle Cellular Activation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A physiologically realistic quantitative description of the electrical behavior of a gastric smooth muscle (SM) cell is presented. The model describes the response of a SM cell when activated by an electrical stimulus coming from the network of interstitial cells of Cajal (ICC) and is mediated by the activation of different ion channels species in the plasma membrane. The conductances (predominantly Ca2+ and K+) that are believed to substantially contribute to the membrane potential fluctuations during slow wave activity have been included in the model. A phenomenological description of intracellular Ca2+ dynamics has also been included because of its primary importance in regulating a number of cellular processes. In terms of shape, duration, and amplitude, the resulting simulated smooth muscle depolarizations (SMDs) are in good agreement with experimentally recordings from mammalian gastric SM in control and altered conditions. This model has also been designed to be suitable for incorporation into large scale multicellular simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Akbarali H. I., Giles W. R. (1993) Ca2+ and Ca(2+)-activated Cl currents in rabbit oesophageal smooth muscle. J. Physiol. 460:117–133

    PubMed  CAS  Google Scholar 

  2. Aliev R. R., Richards W., Wikswo J. P. (2000) A simple nonlinear model of electrical activity in the intestine. J. Theor. Biol. 204:21–28

    Article  PubMed  CAS  Google Scholar 

  3. Amberg G. C., Baker S. A., Koh S. D., Hatton W. J., Murray K. J., Horowitz B., Sanders K. M. (2002) Characterization of the A-type potassium current in murine gastric antrum. J. Physiol. 544:417–428

    Article  PubMed  CAS  Google Scholar 

  4. Amberg G. C., Koh S. D., Imaizumi Y., Ohya S., Sanders K. M. (2003). A-type potassium currents in smooth muscle. Am. J. Physiol. Cell. Physiol. 284:C583–C595

    PubMed  CAS  Google Scholar 

  5. Barrett J. N., Magleby K. L., Pallotta B. S. (1982) Properties of single calcium-activated potassium channels in cultured rat muscle. J. Physiol. 331:211–230

    PubMed  CAS  Google Scholar 

  6. Boev K., Bonev A., Papasova M. (1985) 4-Aminopyridine-induced changes in the electrical and contractile activities of the gastric smooth muscle. Gen. Physiol. Biophys. 4:589–595

    PubMed  CAS  Google Scholar 

  7. Bradley K. N., Flynn E. R., Muir T. C., McCarron J. G. (2002) Ca(2+) regulation in guinea-pig colonic smooth muscle: the role of the Na(+)–Ca(2+) exchanger and the sarcoplasmic reticulum. J. Physiol. 538:465–482

    Article  PubMed  CAS  Google Scholar 

  8. Carl A., Frey B. W., Ward S. M., Sanders K. M., Kenyon J. L. (1993) Inhibition of slow-wave repolarization and Ca(2+)-activated K+ channels by quaternary ammonium ions. Am. J. Physiol. 264:C625–C631

    PubMed  CAS  Google Scholar 

  9. Carl A., Lee H. K., Sanders K. M. (1996) Regulation of ion channels in smooth muscles by calcium. Am J Physiol. 271:C9–C34

    PubMed  CAS  Google Scholar 

  10. Casteels R. (1981) Membrane potential in smooth muscle. In: Bulbring E. B. A., Jones A. W., Tomita T. (eds) Smooth Muscle: An Assesment of Current Knowledge. Edward Arnold, London, pp 105–126

    Google Scholar 

  11. Cousins H. M., Edwards F. R., Hickey H., Hill C. E., Hirst G. D. (2003) Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J. Physiol. 550:829–844

    Article  PubMed  CAS  Google Scholar 

  12. Edwards F. R., Hirst G. D. (2005) An electrical description of the generation of slow waves in the antrum of the guinea-pig. J. Physiol. 564:213–232

    Article  PubMed  CAS  Google Scholar 

  13. Farrugia G. (1999) Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. Annu. Rev. Physiol. 61:45–84

    Article  PubMed  CAS  Google Scholar 

  14. Farrugia G., Rich A., Rae J. L., Sarr M. G., Szurszewski J. H. (1995) Calcium currents in human and canine jejunal circular smooth muscle cells. Gastroenterology 109:707–717

    Article  PubMed  CAS  Google Scholar 

  15. Forrest, A. S., T. Ordog, and K. M. Sanders. Neural regulation of slow wave frequency in the murine gastric antrum. Am. J. Physiol. Gastrointest. Liver Physiol. 290(3):G486–G495, 2005.

    Google Scholar 

  16. Ganitkevich V., Shuba M. F., Smirnov S. V. (1987) Calcium-dependent inactivation of potential-dependent calcium inward current in an isolated guinea-pig smooth muscle cell. J. Physiol. 392:431–449

    PubMed  Google Scholar 

  17. Hagiwara S., Kusano K., Saito N. (1961) Membrane changes of Onchidium nerve cell in potassium-rich media. J. Physiol. 155:470–489

    PubMed  CAS  Google Scholar 

  18. Hirst G. D., Edwards F. R. (2004) Role of interstitial cells of Cajal in the control of gastric motility. J. Pharmacol. Sci. 96:1–10

    Article  PubMed  CAS  Google Scholar 

  19. Holm A. N., Rich A., Miller S. M., Strege P., Ou Y., Gibbons S., Sarr M. G., Szurszewski J. H., Rae J. L., Farrugia G. (2002) Sodium current in human jejunal circular smooth muscle cells. Gastroenterology 122:178–187

    Article  PubMed  CAS  Google Scholar 

  20. Huang S., Nakayama S., Iino S., Tomita T. (1999) Voltage sensitivity of slow wave frequency in isolated circular muscle strips from guinea pig gastric antrum. Am. J. Physiol. 276:G518–G528

    PubMed  CAS  Google Scholar 

  21. Huizinga J. D. (2001) Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. II. Gastric motility: lessons from mutant mice on slow waves and innervation. Am Am. J. Physiol. Gastrointest. Liver Physiol. 281:G1129–G1134

    PubMed  CAS  Google Scholar 

  22. Hurwitz L., Fitzpatrick D. F., Debbas G., Landon E. J. (1973) Localization of calcium pump activity in smooth muscle. Science 179:384–386

    Article  PubMed  CAS  Google Scholar 

  23. Inoue R., Isenberg G. (1990) Effect of membrane potential on acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. 424:57–71

    PubMed  CAS  Google Scholar 

  24. Inoue R., Isenberg G. (1990) Intracellular calcium ions modulate acetylcholine-induced inward current in guinea-pig ileum. J. Physiol. 424:73–92

    PubMed  CAS  Google Scholar 

  25. Isaac L., McArdle S., Miller N. M., Foster R. W., Small R. C. (1996) Effects of some K(+)-channel inhibitors on the electrical behaviour of guinea-pig isolated trachealis and on its responses to spasmogenic drugs. Br. J. Pharmacol. 117:1653–1662

    PubMed  CAS  Google Scholar 

  26. Kang T. M., Kim Y. C., Sim J. H., Rhee J. C., Kim S. J., Uhm D. Y., So I., Kim K. W. (2001) The properties of carbachol-activated nonselective cation channels at the single channel level in guinea pig gastric myocytes. Jpn. J. Pharmacol. 85:291–298

    Article  PubMed  CAS  Google Scholar 

  27. Kim S. J., Ahn S. C., Kim J. K., Kim Y. C., So I., Kim K. W. (1997) Changes in intracellular Ca2+ concentration induced by L-type Ca2+ channel current in guinea pig gastric myocytes. Am. J. Physiol. 273:C1947–C1956

    PubMed  CAS  Google Scholar 

  28. Knot H., Brayden J., Nelson M. (1995) Calcium channels and potassium channels. In: Barany M., (eds). Biochemistry of Smooth Muscle Contraction. Academic Press, Chicago, pp. 203–217

    Google Scholar 

  29. Koh S. D., Monaghan K., Ro S., Mason H. S., Kenyon J. L., Sanders K. M. (2001) Novel voltage-dependent non-selective cation conductance in murine colonic myocytes. J. Physiol. 533:341–355

    Article  PubMed  CAS  Google Scholar 

  30. Koh S. D., Ward S. M., Dick G. M., Epperson A., Bonner H. P., Sanders K. M., Horowitz B., Kenyon J. L. (1999) Contribution of delayed rectifier potassium currents to the electrical activity of murine colonic smooth muscle. J. Physiol. 515(Pt 2):475–487

    Article  PubMed  CAS  Google Scholar 

  31. Lang, R. J. and C. A. Rattray-Wood. A simple mathematical model of the spontaneous electrical activity in a single smooth muscle myocyte. In: Smooth Muscle Excitation, edited by B. Bolton and T. Tomita. London: Academic Press, 1996, pp. 391–402.

    Google Scholar 

  32. Langton P. D., Burke E. P., Sanders K. M. (1989) Participation of Ca currents in colonic electrical activity. Am. J. Physiol. 257:C451–C460

    PubMed  CAS  Google Scholar 

  33. Miftakhov R. N., Abdusheva G. R., Christensen J. (1999) Numerical simulation of motility patterns of the small bowel. 1. formulation of a mathematical model. J. Theor. Biol. 197:89–112

    Article  PubMed  CAS  Google Scholar 

  34. Monteith G. R., Kable E. P., Chen S., Roufogalis B. D. (1996) Plasma membrane calcium pump-mediated calcium efflux and bulk cytosolic free calcium in cultured aortic smooth muscle cells from spontaneously hypertensive and Wistar-Kyoto normotensives rats. J. Hypertens 14:435–442

    Article  PubMed  CAS  Google Scholar 

  35. Moore E. D., Etter E. F., Philipson K. D., Carrington W. A., Fogarty K. E., Lifshitz L. M., Fay F. S. (1993) Coupling of the Na+/Ca2+ exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature 365:657–660

    Article  PubMed  CAS  Google Scholar 

  36. Muraki K., Imaizumi Y., Watanabe M. (1991) Sodium currents in smooth muscle cells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig. J. Physiol. 442:351–375

    PubMed  CAS  Google Scholar 

  37. Noack T., Deitmer P., Lammel E. (1992) Characterization of membrane currents in single smooth muscle cells from the guinea-pig gastric antrum. J. Physiol. 451:387–417

    PubMed  CAS  Google Scholar 

  38. Noble D. (2004) Modeling the heart. Physiology (Bethesda) 19:191–197

    CAS  Google Scholar 

  39. Ohta T., Ito S., Nakazato Y. (1993) Chloride currents activated by caffeine in rat intestinal smooth muscle cells. J. Physiol. 465:149–162

    PubMed  CAS  Google Scholar 

  40. Pullan A., Cheng L., Yassi R., Buist M. (2004) Modelling gastrointestinal bioelectric activity. Prog. Biophys. Mol. Biol. 85:523–550

    Article  PubMed  Google Scholar 

  41. Sanders K. M. (2001) Invited review: mechanisms of calcium handling in smooth muscles. J. Appl. Physiol. 91:1438–1449

    PubMed  CAS  Google Scholar 

  42. Sanders, K., S. Koh, and S. Ward. Organization and electrophysiology of interstitial cells of cajal and smooth muscle cells in the gastrointestinal tract. In: Physiology of the gastrointestinal tract, edited by L.R. Johnson. Boston: Elsevier Academic Press, 2006, pp. 533–576.

    Google Scholar 

  43. Sanders K. M., Koh S. D., Ward S. M. (2006) Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol. 68:307–343

    Article  PubMed  CAS  Google Scholar 

  44. Sims S. M. (1992) Calcium and potassium currents in canine gastric smooth muscle cells. Am. J. Physiol. 262:G859–G867

    PubMed  CAS  Google Scholar 

  45. Sims S. M. (1992) Cholinergic activation of a non-selective cation current in canine gastric smooth muscle is associated with contraction. J. Physiol. 449:377–398

    PubMed  CAS  Google Scholar 

  46. Skinner F. K., Ward C. A., Bardakjian B. L. (1993) Pump and exchanger mechanisms in a model of smooth muscle. Biophys. Chem. 45:253–272

    Article  PubMed  CAS  Google Scholar 

  47. Smirnov S. V., Zholos A. V., Shuba M. F. (1992) A potential-dependent fast outward current in single smooth muscle cells isolated from the newborn rat ileum. J. Physiol. 454:573–589

    PubMed  CAS  Google Scholar 

  48. Splawski I., Timothy K. W., Sharpe L. M., Decher N., Kumar P., Bloise R., Napolitano C., Schwartz P. J., Joseph R. M., Condouris K., Tager-Flusberg H., Priori S. G., Sanguinetti M. C., Keating M. T. (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31

    Article  PubMed  CAS  Google Scholar 

  49. Suzuki H. (2000) Cellular mechanisms of myogenic activity in gastric smooth muscle. Jpn. J. Physiol. 50:289–301

    Article  PubMed  CAS  Google Scholar 

  50. ten Tusscher K. H., Noble D., Noble P. J., Panfilov A. V. (2004) A model for human ventricular tissue. Am. J. Physiol. Heart. Circ. Physiol. 286:H1573–H1589

    Article  PubMed  CAS  Google Scholar 

  51. Thornbury K. D., Ward S. M., Sanders K. M. (1992) Participation of fast-activating, voltage-dependent K currents in electrical slow waves of colonic circular muscle. Am. J. Physiol. 263:C226–236

    PubMed  CAS  Google Scholar 

  52. Tiwari J. K., Sikdar S. K. (1999) Temperature-dependent conformational changes in a voltage-gated potassium channel. Eur. Biophys. J. 28:338–345

    Article  PubMed  CAS  Google Scholar 

  53. Vivaudou M. B., Clapp L. H., Walsh J. V., Jr., Singer J. J. (1988) Regulation of one type of Ca2+ current in smooth muscle cells by diacylglycerol and acetylcholine. Faseb. J. 2:2497–2504

    PubMed  CAS  Google Scholar 

  54. Vogalis F., Sanders K. M. (1990) Cholinergic stimulation activates a non-selective cation current in canine pyloric circular muscle cells. J. Physiol. 429:223–236

    PubMed  CAS  Google Scholar 

  55. Vogalis F., Publicover N. G., Hume J. R., Sanders K. M. (1991) Relationship between calcium current and cytosolic calcium in canine gastric smooth muscle cells. Am. J. Physiol. 260:C1012–C1018

    PubMed  CAS  Google Scholar 

  56. Vogalis F., Publicover N. G., Sanders K. M. (1992) Regulation of calcium current by voltage and cytoplasmic calcium in canine gastric smooth muscle. Am. J. Physiol. 262:C691–C700

    PubMed  CAS  Google Scholar 

  57. Wang Q., Akbarali H. I., Hatakeyama N., Goyal R. K. (1996) Caffeine- and carbachol-induced Cl- and cation currents in single opossum esophageal circular muscle cells. Am. J. Physiol. 271:C1725–C1734

    PubMed  CAS  Google Scholar 

  58. Ward S. M., Dixon R. E., de Faoite A., Sanders K. M. (2004) Voltage-dependent calcium entry underlies propagation of slow waves in canine gastric antrum. J. Physiol. 561:793–810

    Article  PubMed  CAS  Google Scholar 

  59. White C., McGeown J. G. (2000) Regulation of basal intracellular calcium concentration by the sarcoplasmic reticulum in myocytes from the rat gastric antrum. J. Physiol. 529(Pt 2):395–404

    Article  PubMed  CAS  Google Scholar 

  60. Wu C., Fry C. H. (2001) Na(+)/Ca(2+) exchange and its role in intracellular Ca(2+) regulation in guinea pig detrusor smooth muscle. Am. J. Physiol. Cell. Physiol. 280:C1090–C1096

    PubMed  CAS  Google Scholar 

  61. Xiong Z., Sperelakis N., Noffsinger A., Fenoglio-Preiser C. (1995) Ca2+ currents in human colonic smooth muscle cells. Am. J. Physiol. 269:G378–G385

    PubMed  CAS  Google Scholar 

  62. Xu W. X., Kim S. J., So I., Kang T. M., Rhee J. C., Kim K. W. (1997) Volume-sensitive chloride current activated by hyposmotic swelling in antral gastric myocytes of the guinea-pig. Pflugers Arch. 435:9–19

    Article  PubMed  CAS  Google Scholar 

  63. Yamamoto Y., Hu S. L., Kao C. Y. (1989) Inward current in single smooth muscle cells of the guinea pig taenia coli. J. Gen. Physiol. 93:521–550

    Article  PubMed  CAS  Google Scholar 

  64. Yoshino M., Someya T., Nishio A., Yabu H. (1988) Whole-cell and unitary Ca channel currents in mammalian intestinal smooth muscle cells: evidence for the existence of two types of Ca channels. Pflugers Arch. 411:229–231

    Article  PubMed  CAS  Google Scholar 

  65. Yunker A. M., McEnery M. W. (2003) Low-voltage-activated ("T-Type") calcium channels in review. J. Bioenerg. Biomembr. 35:533–575

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. K. Sanders and Dr. G. Farrugia for their advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin L. Buist.

Additional information

Supplemental Material

A sample implementation of the model is available from the authors upon request.

Appendix

Appendix

The main equations of the model are:

$$ C_{\rm m} \frac{dV_{\rm m}} {dt}=-(I_{\rm ion} +I_{\rm stim} ) $$
$$ I_{\rm ion} =I_{\rm CaL} +I_{\rm LVA} +I_{\rm Kr} +I_{\rm Ka} +I_{\rm BK} +I_{\rm Kb} +I_{\hbox{Na}} +I_{\rm NSCC} $$
$$ I_{\rm stim} = \left\{ {\begin{array}{ll} {G_{\rm couple} \ast \Delta V_{\rm ICC}} & {t < t_{\rm ICCpeak}} \\ {G_{\rm couple} \ast \Delta V_{\rm ICC} \ast \frac{1}{1+e^{\frac{t-8000}{1000}}}} & {t_{\rm ICCpeak} < t < t_{\rm ICCplateau}} \\ {I_{\rm stim} (t=t_{\rm ICCplateau} )\ast \frac{1.3}{1+e^\frac{t-8000}{150}}} & {t_{\rm ICCplateau} < t < t_{\rm ICC}} \\ \end{array}} \right. $$
$$ \frac{d[{\rm Ca}]_i} {dt}=-\frac{I_{\hbox{caL}} +I_{\hbox{caT}}} {2\ast F\ast V_c} -I_{\rm CaExt} $$

Steady state parameters

Activation: \(\frac{1}{1+e^{-\frac{V_{0.5} +V}{k}}}\) Inactivation: \(\frac{1}{1+e^{\frac{V_{0.5} +V}{k}}}\)

Activation

Inactivation

Variable name

V 0.5 (mV)

k

Variable name

V 0.5 (mV)

k

d

17

4.3

f

43

8.9

d LVA

27.5

10.9

f LVA

15.8

7

x r1

27

5

x r2*

58

10

x a1

26.5

7.9

x a2**

65

6.2

d Na

47

4.8

f Na

78

3

m NSCC

25

20

   
  1. * For this variable the equation was used in the form: \(\frac{0.8}{1+e^{\frac{V_{0.5} +V}{k}}}+0.2\)
  2. ** For this variable the equation was used in the form: \(\frac{0.9}{1+e^{\frac{V_{0.5} +V}{k}}}+0.1\)

Time constants

Variable name

Time constants (ms)

d

0.47

f

86

d LVA

3

f LVA

\(7.58\ast e^{0.00817\ast V_{\rm m}} \)

x r1

80

x r2

\(-707.0+1481\ast e^\frac{V_{\rm m} +36}{95}\)

x a1

\(31.8+175\ast e^{-0.5\ast (\frac{V_{\rm m} +44.4}{22.3})^{2}}\)

x a2

90

d Na

−0.017* V m+0.44

f Na

−0.25* V m+5.5

m NSCC

\(\frac{150}{1+e^{-\frac{V_{\rm m} +66}{26}}}\)

Model parameters

Parameter name

Description

Value

Units

R

Ideal gas constant

8.314

J/(mol*K)

T

Temperature

310

K

F

Faraday constant

96486.7

C/mol

C m

Cell membrane capacitance

77

pF

A m

Cell surface

0.000041

cm2

V c

Total cytoplasmic volume

3500

μm3

Cao

Extracellular Ca2+ concentration

2.5

mM

Nao

Extracellular sodium concentration

137

mM

Na i

Intracellular sodium concentration

10

mM

K o

Extracellular potassium concentration

5.9

mM

K i

Intracellular potassium concentration

164

mM

Ach

Acetylcholine concentration in absence of muscarinic stimulation

10

nM

G CaL

Maximal conductance for L-type Ca2+ channels

65

nS

G LVA

Maximal conductance for low-voltage activated Ca2+ channels

0.18

nS

G Kr

Maximal conductance for delayed rectifier potassium channels

35

nS

G Ka

Maximal conductance for A-type potassium channels

9

nS

G BK

Maximal conductance for Ca2+-activated potassium channels

45.7

nS

G Kb

Maximal background potassium conductance

0.014

nS

G Na

Maximal conductance for sodium channels

3

nS

G NSCC

Maximal conductance for non-selective cationic channels

50

nS

G couple

Coupling conductance between ICC and SM

1.3

nS

h

Steepness for Ca2+ activation for BK channels

2

K bk

Steepness for voltage activation for BK channels

−17

mV

Caset

Ca2+ set point for BK channels

0.001

mM

h Ca

Half concentration for the fCa variable

201.4

nM

s Ca

Slope factor for the steady state fCa variable

13.1

nM

E NSCC

Reversal potential for NSCC channels

−28

mV

K m-NSCC

Half activation value for Ach activation of NSCC channels

10

μM

n Ach

Hill coefficient for Ach activation of NSCC channels

1

K Ca-NSCC

Half activation value for Ca2+ facilitation of NSCC channels

200

nM

n Ca

Hill coefficient for Ca2+ facilitation of NSCC channels

−4

Q10-Ca

Q10 value for Ca2+ channels

2.1

Q10-K

Q10 value for potassium channels

1.5

Q10-Na

Q10 value for sodium channels

2.45

ΔV ICC

Membrane potential fluctuation in an ICC

59

mV

t ICCpeak

Peak time of the slow wave in an ICC

98

ms

t ICCplateau

Plateau time of the slow wave in the ICC

7582

ms

t ICC

Total time of the slow wave in the ICC

10,000

ms

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrias, A., Buist, M.L. A Quantitative Model of Gastric Smooth Muscle Cellular Activation. Ann Biomed Eng 35, 1595–1607 (2007). https://doi.org/10.1007/s10439-007-9324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9324-8

Keywords

Navigation