Skip to main content

Advertisement

Log in

Modelling Human Colonic Smooth Muscle Cell Electrophysiology

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The colon is a digestive organ that is subject to a wide range of motility disorders. However, our understanding of the etiology of these disorders is far from complete. In this study, a quantitative single cell model has been developed to describe the electrical behaviour of a human colonic smooth muscle cell (hCSMC). This model includes the pertinent ionic channels and intracellular calcium homoeostasis. These components are believed to contribute significantly to the electrical response of the hCSMC during a slow wave. The major ion channels were constructed based on published data recorded from isolated human colonic myocytes. The whole cell model is able to reproduce experimentally recorded slow waves from human colonic muscles. This represents the first biophysically-detailed model of a hCSMC and provides a means to better understand colonic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Amberg, G. C., S. A. Baker, S. D. Koh, W. J. Hatton, K. J. Murray, B. Horowitz, and K. M. Sanders. Characterization of the A-type potassium current in murine gastric antrum. J. Physiol. 544:417–428, 2002.

    Article  Google Scholar 

  2. Amberg, G. C., S. D. Koh, W. J. Hatton, K. J. Murray, K. Monaghan, B. Horowitz, and K. M. Sanders. Contribution of Kv4 channels toward the A-type potassium current in murine colonic myocytes. J. Physiol. 544:403–415, 2002.

    Article  Google Scholar 

  3. Ayachi, S. E., F. Borie, R. Magous, K. Sasaki, D. Le Nguyen, J.-P. Bali, B. Millat, and C. Jarrousse. Contraction induced by glicentin on smooth muscle cells from the human colon is abolished by exendin (9-39). Neurogastroenterol. Motil. 17:302–309, 2005.

    Article  Google Scholar 

  4. Bolton, T. B., S. A. Prestwich, A. V. Zholos, and D. V. Gordienko. Excitation-contraction coupling in gastrointestinal and other smooth muscles. Annu. Rev. Physiol. 61:85–115, 1999.

    Article  Google Scholar 

  5. Boyer, J. C., R. Magous, M. O. Christen, J. L. Balmes, and J. P. Bali. Contraction of human colonic circular smooth muscle cells is inhibited by the calcium channel blocker pinaverium bromide. Cell Calcium 29:429–438, 2001.

    Article  Google Scholar 

  6. Bradley, K. N., E. R. Flynn, T. C. Muir, and J. G. Mccarron. Ca2+ regulation in guinea-pig colonic smooth muscle : the role of the Na+/Ca2+ exchanger and the sarcoplasmic reticulum. J. Physiol. 538:465–482, 2002.

    Article  Google Scholar 

  7. Burke, E. P. and K. M. Sanders. Effects of ouabain on background and voltage-dependent currents in canine colonic myocytes. Am. J. Physiol. Cell Physiol. 259:C402–C408, 1990.

    Google Scholar 

  8. Carl, A. Multiple components of delayed rectifier K+ current in canine colonic smooth muscle. J. Physiol. 484:339–353, 1995.

    Article  Google Scholar 

  9. Carl, A., B. W. Frey, S. M. Ward, and K. M. Sanders. Inhibition of slow-wave repolarization K+ channels by quaternary ammonium ions. Am J. Physiol. Cell. Physiol. 264:C625–C631, 1993.

    Google Scholar 

  10. Carl, A., H. K. Lee, and K. M. Sanders. Regulation of ion channels in smooth muscles by calcium. Am J. Physiol. Cell. Physiol. 271:C9–C34, 1996.

    Google Scholar 

  11. Carl, A. and K. M. Sanders. Ca2+-activated K channels of canine colonic myocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 257:C470–C480, 1989.

    Google Scholar 

  12. Casteels, R., G. Droogmans, and H. Hendrickx. Electrogenic sodium pump in smooth muscle cells of the guinea-pig’s taenia coli. J. Physiol. 217:297–313, 1971.

    Article  Google Scholar 

  13. Chen, Y.-H., Y.-L. Chen, S.-J. Lin, C.-Y. Chou, G.-Y. Mar, M.-S. Chang, and S.-P. Wang. Electron microscopic studies of phenotypic modulation of smooth muscle cells in coronary arteries of patients with unstable angina pectoris and postangioplasty restenosis. Circulation 95:1169–1175, 1997.

    Article  Google Scholar 

  14. Choe, E. K., J. S. Moon, S. B. Moon, I.-S. So, and K. J. Park. Electromechanical characteristics of the human colon in vitro: is there any difference between the right and left colon? Int. J. Colorectal Dis. 25:1117–1126, 2010.

    Article  Google Scholar 

  15. Corrias, A. and M. L. Buist. A quantitative model of gastric smooth muscle cellular activation. Ann. Biomed. Eng. 35:1595–1607, 2007.

    Article  Google Scholar 

  16. Daub, B. and V. Y. Ganitkevich. An estimate of rapid cytoplasmic calcium buffering in a single smooth muscle cell. Cell Calcium 27:3–13, 2000.

    Article  Google Scholar 

  17. Dinning, P. G., L. Wiklendt, L. Maslen, I. Gibbins, V. Patton, J. W. Arkwright, D. Z. Lubowski, G. O’Grady, P. A. Bampton, S. J. Brookes, and M. Costa. Quantification of in vivo colonic motor patterns in healthy humans before and after a meal revealed by high-resolution fiber-optic manometry. Neurogastroenterol. Motil. 26:1443–1457, 2014.

    Article  Google Scholar 

  18. Duridanova, D. B., H. S. Gagov, S. D. Dimitrov, and K. K. Boev. Main components of voltage-sensitive K+ currents of the human colonic smooth muscle cells. Digestion 58:479–488, 1997.

    Article  Google Scholar 

  19. Duthie, H. L. Measurement of electrical activity of the colon in man. In: Psychophysiology of the Gastrointestinal Tract. New York: Springer US 1983, pp. 251–261.

  20. Dwyer, L., P.-L. Rhee, V. Lowe, H. Zheng, L. Peri, S. Ro, K. M. Sanders, and S. D. Koh. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 301:G287–G296, 2011.

    Article  Google Scholar 

  21. Farrugia, G. Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. Annu. Rev. Physiol. 61:45–84, 1999.

    Article  Google Scholar 

  22. Franck, H., I. D. Kong, C. W. Shuttleworth, and K. M. Sanders. Rebound excitation and alternating slow wave patterns depend upon eicosanoid production in canine proximal colon. J. Physiol. 520:885–895, 1999.

    Article  Google Scholar 

  23. Han, C., A. Lampert, A. M. Rush, S. D. Dib-Hajj, X. Wang, Y. Yang, and S. G. Waxman. Temperature dependence of erythromelalgia mutation L858F in sodium channel Nav1.7. Mol. Pain 3:3, 2007.

  24. Hodgkin, A. L. and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–544, 1952.

    Article  Google Scholar 

  25. Hollywood, M. A., S. Woolsey, I. K. Walsh, P. F. Keane, N. G. McHale, and K. D. Thornbury. T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra. J. Physiol. 550:753–764, 2003.

    Article  Google Scholar 

  26. Holm, A. N., A. Rich, S. M. Miller, P. Strege, Y. Ou, S. J. Gibbons, M. G. Sarr, J. H. Szurszewski, J. L. Rae, and G. Farrugia. Sodium current in human jejunal circular smooth muscle cells. Gastroenterology 122:178–187, 2002.

    Article  Google Scholar 

  27. Huizinga, J. D., L. Farraway, and A. Den Hertog. Generation of slow-wave-type action potentials in canine colon smooth muscle involves a non-L-type Ca2+ conductance. J. Physiol. 442:15–29, 1991.

    Article  Google Scholar 

  28. Hund, T. J., J. P. Kucera, N. F. Otani, and Y. Rudy. Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model. Biophys. J. 81:3324–3331, 2001.

    Article  Google Scholar 

  29. Hutchinson, R. and C. Griffiths. Acute colonic pseudo-obstruction: a pharmacological approach. Annu. R. Coll. Surg. Engl. 74:364–367, 1992.

    Google Scholar 

  30. Koh, S. D., K. M. Sanders, and A. Carl. Regulation of smooth muscle delayed rectifier K+ channels by protein kinase A. Pflugers Arch. EJP 432:401–412, 1996.

    Article  Google Scholar 

  31. Kovac, J. R., T. Chrones, and S. M. Sims. Temporal and spatial dynamics underlying capacitative calcium entry in human colonic smooth muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 294:88–98, 2008.

    Article  Google Scholar 

  32. Large, R. J., E. Bradley, T. Webb, A. M. O’Donnell, P. Puri, M. A. Hollywood, K. D. Thornbury, N. G. McHale, and G. P. Sergeant. Investigation of L-type Ca2+ current in the aganglionic bowel segment in Hirschsprung’s disease. Neurogastroenterol. Motil. 24:1126–e571, 2012.

    Article  Google Scholar 

  33. Lee, H.-T., G. W. Hennig, N. W. Fleming, K. D. Keef, N. J. Spencer, S. M. Ward, K. M. Sanders, and T. K. Smith. The mechanism and spread of pacemaker activity through myenteric interstitial cells of Cajal in human small intestine. Gastroenterology 132:1852–1865, 2007.

    Article  Google Scholar 

  34. Li, G.-R. and S. Nattel. Properties of human atrial ICa at physiological temperatures and relevance to action potential. Am J. Physiol. Heart Circ. Physiol. 272:H227–H235, 1997.

    Google Scholar 

  35. Linkens, D. A., I. Taylor, and H. L. Duthie. Mathematical modeling of the colorectal myoelectrical activity in humans. IEEE Trans. Biomed. Eng. 23:101–110, 1976.

    Article  Google Scholar 

  36. Liu, L. W. and J. D. Huizinga. Canine colonic circular muscle generates action potentials without the pacemaker component. Can J. Physiol. Pharmacol. 72:70–81, 1994.

    Article  Google Scholar 

  37. Liu, X., N. J. Rusch, J. Striessnig, and S. K. Sarna. Down-regulation of L-type calcium channels in inflamed circular smooth muscle cells of the canine colon. Gastroenterology 120:480–489, 2001.

    Article  Google Scholar 

  38. Martínez-Cutillas, M., V. Gil, D. Gallego, N. Mañé, M. T. Martín, and M. Jiménez. Mechanisms of action of otilonium bromide (OB) in human cultured smooth muscle cells and rat colonic strips. Neurogastroenterol. Motil. 25:e803–e812, 2013.

    Article  Google Scholar 

  39. Moore, E. D., E. F. Etter, K. D. Philipson, W. A. Carrington, K. E. Fogarty, L. M. Lifshitz, and F. S. Fay. Coupling of the Na+/Ca2+ exchanger, Na+/K+ pump and sarcoplasmic reticulum in smooth muscle. Nature 365:657–660, 1993.

    Article  Google Scholar 

  40. Muraki, K., Y. Imaizumi, and M. Watanabe. Sodium currents in smooth muscle cells freshly isolated from stomach fundus of the rat and ureter of the guinea-pig. J. Physiol. 442:351–375, 1991.

    Article  Google Scholar 

  41. Neshatian, L., P. R. Strege, P.-L. Rhee, R. E. Kraichely, A. Mazzone, C. E. Bernard, R. R. Cima, D. W. Larson, E. J. Dozois, C. F. Kline, P. J. Mohler, A. Beyder, and G. Farrugia. Ranolazine inhibits voltage-gated mechanosensitive sodium channels in human colon circular smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 309:G506–G512, 2015.

    Article  Google Scholar 

  42. Ou, Y., S. J. Gibbons, S. M. Miller, P. R. Strege, A. Rich, M. A. Distad, M. J. Ackerman, J. L. Rae, J. H. Szurszewski, and G. Farrugia. SCN5A is expressed in human jejunal circular smooth muscle cells. Neurogastroenterol. Motil. 14:477–486, 2002.

    Article  Google Scholar 

  43. Peery, A. F., S. D. Crockett, A. S. Barritt, E. S. Dellon, S. Eluri, L. M. Gangarosa, E. T. Jensen, J. L. Lund, S. Pasricha, T. Runge, M. Schmidt, N. J. Shaheen, and R. S. Sandler. Burden of gastrointestinal, liver, and pancreatic diseases in the United States. Gastroenterology 149:1731–1741, 2015.

    Article  Google Scholar 

  44. Poh, Y. C., A. Corrias, N. Cheng, and M. L. Buist. A quantitative model of human jejunal smooth muscle cell electrophysiology. PLoS ONE 7:e42385, 2012.

    Article  Google Scholar 

  45. Post, J. M. and J. R. Hume. Ionic basis for spontaneous depolarizations in isolated smooth muscle cells of canine colon. Am J. Physiol. Cell. Physiol. 263:C691–C699, 1992.

    Google Scholar 

  46. Rae, M. G., N. Fleming, D. B. McGregor, K. M. Sanders, and K. D. Keef. Control of motility patterns in the human colonic circular muscle layer by pacemaker activity. J. Physiol. 510:309–320, 1998.

    Article  Google Scholar 

  47. Rich, A., J. L. Kenyon, J. R. Hume, K. Overturf, B. Horowitz, and K. M. Sanders. Dihydropyridine-sensitive calcium channels in canine colonic smooth muscle cells expressed. Am J. Physiol. Cell. Physiol. 264:C745–C754, 1993.

    Google Scholar 

  48. Sanders, K. M., S. D. Koh, T. Ordög, and S. M. Ward. Ionic conductances involved in generation and propagation of electrical slow waves in phasic gastrointestinal muscles. Neurogastroenterol. Motil. 16:100–105, 2004.

    Article  Google Scholar 

  49. Sanders, K. M., S. D. Koh, S. Ro, and S. M. Ward. Regulation of gastrointestinal motility–insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 9:633–645, 2012.

    Article  Google Scholar 

  50. Sanders, K. M., S. D. Koh, and S. M. Ward. Interstitial cells of cajal as pacemakers in the gastrointestinal tract. Annu. Rev. Physiol. 68:307–343, 2006.

    Article  Google Scholar 

  51. Sanders, K. M., S. D. Koh, and S. M. Ward. Organization and electrophysiology of interstitial cells of Cajal and smooth muscle cells in the gastrointestinal tract. In: Physiology of the Gastrointestinal Tract, 5th ed. Burlington: Elsevier, 2012, pp. 511–556.

  52. Sarna, S. K. Colonic motility: from bench side to bedside. In: Colloquium Series on Integrated Systems Physiology: From Molecule to Function, vol. 2. San Rafael: Morgan & Claypool Life Sciences, 2010, pp. 1–157.

  53. Scanzi, J., A. Accarie, E. Muller, B. Pereira, Y. Aissouni, M. Goutte, J. Joubert-Zakeyh, E. Picard, L. Boudieu, C. Mallet, A. Gelot, D. Ardid, F. A. Carvalho, and M. Dapoigny. Colonic overexpression of the T-type calcium channel Cav3.2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients. Neurogastroenterol. Motil. 28(11):1632–1640, 2016.

  54. Sims, S. M. Calcium and potassium currents in canine gastric smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 262:G859–G867, 1992.

    Google Scholar 

  55. Smirnov, S. V., A. V. Zholos, and M. F. Shuba. Potential-dependent inward currents in single isolated smooth muscle cells of the rat ileum. J. Physiol. 454:549–571, 1992.

    Article  Google Scholar 

  56. Strege, P. R., A. Mazzone, R. E. Kraichely, L. Sha, A. N. Holm, Y. Ou, I. Lim, S. J. Gibbons, M. G. Sarr, and G. Farrugia. Species dependent expression of intestinal smooth muscle mechanosensitive sodium channels. Neurogastroenterol. Motil. 19:135–143, 2007.

    Article  Google Scholar 

  57. Strege, P. R., L. Sha, A. Beyder, C. E. Bernard, E. Perez-Reyes, S. Evangelista, S. J. Gibbons, J. H. Szurszewski, and G. Farrugia. T-type Ca2+ channel modulation by otilonium bromide. Am. J. Physiol. Gastrointest. Liver Physiol. 298:G706–G713, 2010.

    Article  Google Scholar 

  58. Taylor, I., H. L. Duthie, R. Smallwood, and D. Linkens. Large bowel myoelectrical activity in man. Gut 16:808–814, 1975.

    Article  Google Scholar 

  59. Ten Tusscher, K. H. W. J., D. Noble, P. J. Noble, and A. V. Panfilov. A model for human ventricular tissue. Am J. Physiol. Heart Circ. Physiol. 286:H1573–H1589, 2004.

    Article  Google Scholar 

  60. Thornbury, K. D., S. M. Ward, and K. M. Sanders. Participation of fast-activating, voltage-dependent K currents in electrical slow waves of colonic circular muscle. Am J. Physiol. Cell. Physiol. 263:C226–C236, 1992.

    Google Scholar 

  61. Vogalis, F., T. Vincent, I. Qureshi, F. Schmalz, M. W. Ward, K. M. Sanders, and B. Horowitz. Cloning and expression of the large-conductance Ca2+-activated K+ channel from colonic smooth muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 271:G629–G639, 1996.

    Google Scholar 

  62. Vogalis, F., Y. Zhang, and R. K. Goyal. An intermediate conductance K+ channel in the cell membrane of mouse intestinal smooth muscle. Biochim. Biophys. Acta 1371:309–316, 1998.

    Article  Google Scholar 

  63. Ward, S. M. and K. M. Sanders. Dependence of electrical slow waves of canine colonic smooth muscle on calcium gradient. J. Physiol. 455:307–319, 1992.

    Article  Google Scholar 

  64. Xiong, Z., N. Sperelakis, A. Noffsinger, and C. Fenoglio-Preiser. Changes in calcium channel current densities in rat colonic smooth muscle cells during development and aging. Am J. Physiol. Cell. Physiol. 265:C617–C625, 1993.

    Google Scholar 

  65. Xiong, Z., N. Sperelakis, A. Noffsinger, and C. Fenoglio-Preiser. Fast Na+ current in circular smooth muscle cells of the large intestine. Pflugers Arch. EJP 423:485–491, 1993.

    Article  Google Scholar 

  66. Xiong, Z., N. Sperelakis, A. Noffsinger, and C. Fenoglio-Preiser. Ca2+ currents in human colonic smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 269:G378–G385, 1995.

    Google Scholar 

Download references

Acknowledgments

Funding support from the National University of Singapore Research Scholarship is gratefully acknowledged.

Conflict of Interest

Jing Wui Yeoh, Alberto Corrias, and Martin Lindsay Buist have declared that no conflict of interest exists.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin L. Buist.

Additional information

Associate Editor Chwee Teck Lim oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (PDF 217 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeoh, J.W., Corrias, A. & Buist, M.L. Modelling Human Colonic Smooth Muscle Cell Electrophysiology. Cel. Mol. Bioeng. 10, 186–197 (2017). https://doi.org/10.1007/s12195-017-0479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-017-0479-6

Keywords

Navigation