Skip to main content
Log in

Oxygen Mass Transport in a Compliant Carotid Bifurcation Model

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

The purpose of the present study was to investigate oxygen mass transfer in the human carotid bifurcation, focusing on the effects of the wall compliance and flow field on the temporal variation and spatial distribution of the oxygen wall flux. Details of unsteady convective-diffusive oxygen transport were examined numerically using a compliant model of the human carotid bifurcation and realistic blood flow waveforms. Results reveal that axial flow separation at the outer common-internal carotid wall can significantly alter the flow field, oxygen tension field, and oxygen wall flux distribution. At the outer wall of the sinus, the Sherwood number, Sh (non-dimensional oxygen wall flux), takes on significantly lower values than at other sites due to the attenuation of transport rates by convective flow away from wall. More specifically, the lowest value of Sh was Sh∼6 (in the sinus), which is much lower than the value of the non-dimensional oxygen consumption rate (Damkohler number, Da) in the reactive wall tissue (Da=29–39). At the inner wall of the sinus, Sh∼170 is far above the expected value of Da. This implies that flow separation on the outer wall of the sinus provides a very strong fluid mechanical barrier to oxygen transport; whereas at the inner wall of the sinus, the mechanism of transport is controlled by the wall consumption rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.
FIGURE 10.
FIGURE 11.

Similar content being viewed by others

REFERENCES

  1. Adams, V., K. Lenk, A. Linke, D. Lenz, S. Erbs, M. Sandri, A. Tarnok, S. Gielen, F. Emmrich, G. Schuler, and R. Hambrecht. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler. Thromb. Vasc. Biol. 24(4):684–690, 2004.

    Article  PubMed  CAS  Google Scholar 

  2. al-Haboubi, H. A., and B. J. Ward. Microvascular permeability of the isolated rat heart to various solutes in well-oxygenated and hypoxic conditions. Int. J. Microcirc. Clin. Exp. 16:291–301, 1996.

    Article  PubMed  CAS  Google Scholar 

  3. Bella, J. N., M. J. Roman, R. Pini, J. E. Schwartz, T. G. Pickering, and R. B. Devereux. Assessment of arterial compliance by carotid midwall strain-stress relation in normotensive adults. Hypertension 33:787–792, 1999.

    PubMed  CAS  Google Scholar 

  4. Bharadvaj, B. K., R. F. Mabon, and D. P. Giddens. Steady flow in a model of the human carotid bifurcation part I – flow visualization. J. Biomech. 15:349–362, 1982.

    Article  PubMed  CAS  Google Scholar 

  5. Botnar, R., G. Rappitsch, M. B. Scheidegger, D. Liepsch, K. Perktold, and P. Boesiger. Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. J. Biomech. 33:137–144, 2000.

    Article  PubMed  CAS  Google Scholar 

  6. Cebral, J. R., P. J. Yim, R. Lohner, O. Soto, and P. L. Choyke. Blood flow modeling in carotid arteries with computational fluid dynamics and MR imaging. Acad. Radiol. 9:1286–1299, 2002.

    Article  PubMed  Google Scholar 

  7. Crawford, D. W., and D. H. Blankenhorn. Arterial wall oxygenation, oxyradicals, and atherosclerosis. Atherosclerosis 89:97–108, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Fischer, S., D. Renz, W. Schaper, and G. F. Karliczek. Effect of barbiturates on hypoxic cultures of brain derived microvascular endothelial cells. Brain Res. 707:47–53, 1996.

    Article  PubMed  CAS  Google Scholar 

  9. He, X., and D. N. Ku. Pulsatile flow in the human left coronary artery bifurcation: average conditions. Trans. ASME J. Biomech. Eng. 118:74–82, 1996.

    Article  CAS  Google Scholar 

  10. Holdworth, D. W., C. J. D. Norley, R. Frayne, D. A. Steinman, and B. K. Rutt. Characterization of common carotid artery blood-flow waveforms in normal human subjects. Physiol. Meas. 20:219–240, 1999.

    Article  Google Scholar 

  11. Kaazempur-Mofrad, M. R., and C. R. Ethier. Mass transport in an anatomically realistic human right coronary artery. Ann. Biomed. Eng. 29(2):121–127, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Kobayashi, H., N. Takizawa, T. Negishi, and K. Tanishita. Intravascular inhomogeneous oxygen distribution in microvessels: Theory. Respir. Physiol. Neurobiol. 19; 133(3):271–275, 2002.

    Article  PubMed  Google Scholar 

  13. Krizbai, I. A., H. Bauer, N. Bresgen, P. M. Eckl, A. Farkas, E. Szatmari, A. Traweger, K. Wejksza, and H. C. Bauer. Effect of oxidative stress on the junctional proteins of cultured cerebral endothelial cells. Cell. Mol. Neurobiol. 25(1):129–139, 2005.

    Article  PubMed  CAS  Google Scholar 

  14. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302, 1985.

    PubMed  CAS  Google Scholar 

  15. Lauwerier, H. A. The use of confluent hypergeometric functions in mathematical physics and solution of an eigenvalue problem. Appl. Sci. Res. Sect. A. 2:184–204, 1950.

    Article  Google Scholar 

  16. Lèvêque, M. A. Les lois de la transmission de chaleur par convection. Annales des Mines Memoires Series 12. 13:201–299, 305–362, 381–415, 1928.

  17. Ma, P. P., X. M. Li, and D. N. Ku. Convective mass transfer at the carotid bifurcation. J. Biomech. 30:565–571, 1997.

    Article  PubMed  CAS  Google Scholar 

  18. Maeda, N., Y. Sawayama, M. Tatsukawa, K. Okada, N. Furusyo, M. Shigematsu, S. Kashiwagi, and J. Hayashi. Carotid artery lesions and atherosclerotic risk factors in Japanese hemodynamics patients. Atherosclerosis 169:183–192, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Matsushita, H., R. Morishita, T. Nata, M. Aoki, H. Nakagami, Y. Taniyama, K. Yamamoto, J. Higaki, Y. Kaneda, and T. Ogihara. Hypoxia-induced endothelial apoptosis through nuclear factor-κB (NF-κB) mediated bcl-2 suppression: in vitro evidence of the importance of NF-κB in endothelial cell regulation. Circ. Res. 86:974–981, 2000.

    PubMed  CAS  Google Scholar 

  20. Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 27:143–156, 1998.

    Article  Google Scholar 

  21. Moore, J. A., and C. R. Ethier. Oxygen mass transfer calculations in large arteries. Trans. ASME J. Biomech. Eng. 119:469–475, 1997.

    Article  CAS  Google Scholar 

  22. Papathanasopoulou, P., S. Zhao, U. Koehler, M. B. Robertson, Q. Long, P. Hoskins, X. Y. Xu, and I. Marshall. MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J. Magn. Reson. Imaging 17:153–162, 2003.

    Article  PubMed  Google Scholar 

  23. Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Qiu, Y., and J. M. Tarbell. Numerical simulation of oxygen mass transfer in a compliant curved tube model of a coronary artery. Ann. Biomed. Eng. 28(1):26–38, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Ramnarine, K. V., T. Hartshorne, Y. Sensier, M. Naylor, J. Walker, A. R. Naylor, R. B. Panerai, and D. H. Evans. Tissue Doppler imaging of carotid plaque wall motion: a pilot study. Cardiovascular Ultrasound 1:1–15, 2003.

    Article  Google Scholar 

  26. Salzer, R. S., M. J. Thubrikar, and R. T. Eppink. Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis. J. Biomech. 28:1333–1340, 1995.

    Article  Google Scholar 

  27. Santilli, S. M., R. B. Stevens, J. G. Anderson, W. D. Payne, and M. D. F. Caldwell. Transarterial wall oxygen gradients at the dog carotid bifurcation. Am. J. Physiol. Heart Circ. Physiol. 268: H155–H161, 1995.

    CAS  Google Scholar 

  28. Schlichting, H. Boundary Layer Theory. New York, NY, USA: McGraw-Hill, pp. 436–439, 1979.

    Google Scholar 

  29. Schulz, U. G. R., and P. M. Rothwell. Major variation in carotid bifurcation anatomy – a possible risk factor for plaque development. Stroke 32:2522–2529, 2001.

    Article  PubMed  CAS  Google Scholar 

  30. Secomb, T. W. Flow in a channel with pulsating walls. J. Fluid Mech. 88(2):273–288, 1978.

    Article  Google Scholar 

  31. Sellars, J. R., M. Tribus, and J. S. Klein. Heat transfer to laminar flow in a round tube or flat conduit – the graetz problem extended. Trans. ASME 78, 441–448, 1956.

    Google Scholar 

  32. Selzer, R. H., W. J. Mack, P. L. Lee, H. Kwong-Fu, and H. N. Hodis. Improved common carotid elasticity and intima-media thickness measurements from computer analysis of sequential ultrasound frames. Athrosclerosis 154:185–193, 2001.

    Article  CAS  Google Scholar 

  33. Sitzer, M., D. Puac, A. Buehler, D. A. Steckel, S. von Kegler, H. S. Markus, and H. Steinmetz. Internal carotid artery angle of origin: a novel risk factor for early carotid atherosclerosis. Stroke 34:950–955, 2003.

    Article  PubMed  Google Scholar 

  34. Stadler, R. W., J. A. Taylor, and R. S. Lees. Comparison of B-mode, M-mode and Echo-tracking methods for measurement of the arterial distension waveform. Ultrasound Med. Biol. 23:879–887, 1997.

    Article  PubMed  CAS  Google Scholar 

  35. Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magnet. Reson. Med. 47:149–159, 2002.

    Article  Google Scholar 

  36. Sun, Y., C. H. Lin, C. J. Lu, P. K. Yip, and R. C. Chen. Carotid atherosclerosis, intima media thickness and risk factors – an analysis of 1781 asymptomatic subjects in Taiwan. Atherosclerosis 164:89–94, 2002.

    Article  PubMed  CAS  Google Scholar 

  37. Tada, S., and J. M. Tarbell. A computational study of flow in a compliant carotid bifurcation – stress phase angle correlation with shear stress. Ann. Biomed. Eng. 33:1202–1212, 2005.

    Article  PubMed  CAS  Google Scholar 

  38. Tarbell, J. M. Mass transport in arteries and the localization of atherosclerosis. Annu. Rev. Biomed. Eng. 5:79–118, 2003.

    Article  PubMed  CAS  Google Scholar 

  39. Tuder, R. M., B. E. Flook, and N. F. Voelkel. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. J. Clin. Invest. 95:1798–1807, 1995.

    Article  PubMed  CAS  Google Scholar 

  40. Urbina, E. M., S. R. Srinivasan, R. Tang, M. G. Bond, L. Kieltyka, and G. S. Berenson. Impact of multiple coronary risk factors on the intima-media thickness of different segments of carotid artery in healthy young adults (The Bogalusa Heart Study). Am. J. Cardiol. 90:953–958, 2002.

    Article  PubMed  Google Scholar 

  41. Vadapalli, A., R. N. Pittman, and A. S. Popel. Estimating oxygen transport resistance of the microvascular wall. Am. J. Physiol. Heart Circ. Physiol. 279:H657–H671, 2000.

    PubMed  CAS  Google Scholar 

  42. Whiteley, J. P., D. J. Gavaghan, and C. E. W. Hahn. Mathematical modeling of oxygen transport to tissue. J. Math. Biol. 44:503–522, 2002.

    Article  PubMed  Google Scholar 

  43. Younis, H. F., M. R. Kaazempur-Mofrad, C. Chung, R. C. Chan, and R. D. Kamm. Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation. Ann. Biomed. Eng. 13:995–1006, 2003.

    Article  Google Scholar 

  44. Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.

    PubMed  CAS  Google Scholar 

  45. Zhao, S. Z., B. Ariff, Q. Long, A. D. Hughes, S. A. Thom, A. V. Stanton, and X. Y. Xu. Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J. Biomech. 35:1367–1377, 2002.

    Article  PubMed  CAS  Google Scholar 

  46. Zhao, S. Z., X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff, and Q. Long. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33:975–984, 2000.

    Article  PubMed  CAS  Google Scholar 

  47. Zulliger, M. A., N. T. M. R. Kwak, T. Tsapikouni, and N. Stergiopulos. Effects of longitudinal stretch on VSM tone and distensibility of muscular conduit arteries. Am. J. Physiol. Heart Circ. Physiol. 283:H2599–H2605, 2002.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by NIH NHLBI HL35549 to JMT. Numerical simulations were carried out on a parallel supercomputing machine the Silicon Graphics Origin-2000, at the National Center for Supercomputing Applications (NCSA, Champaign, IL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Tarbell.

APPENDIX

APPENDIX

The equations governing the fluid motion are the momentum equations and the equation of continuity:

$$ \rho \frac{{\partial u_i }}{{\partial t}} + \rho u_{i,j} (u_j - \bar u_j ) = \sigma _{ij,j} + \rho f_i $$
(A1)
$$ u_{j,j} = 0 $$
(A2)

where u j is the velocity component in the x j direction, comma j (, j) denotes the partial derivative of a function with respect to the independent variable x j . Any terms in which the same index appears twice stands for the sum of all terms obtained by giving this index its complete range of values (j=1, 2, 3). In addition, ρ is the fluid density, σ ij is the stress, f i is the body force at time t per unit mass, and \(\bar u\) is the mesh velocity at time t. The equations governing the structural domain are the momentum equations, the equilibrium conditions and the constitutive equations, respectively:

$$ \rho a_i = \sigma _{ij,j} + \rho f_i $$
(A3)
$$ \sigma _{ij} n_j = {}^st_i $$
(A4)
$$ \sigma _{ij} = D_{ijkl} \varepsilon _{kl} $$
(A5)

where a i represents the acceleration of a material point (where displacement is defined as \(d_i = x_i - x_i^0\), and \(x_i^0\) is the stress-free position) at time t, n j is the outward pointing normal vector on the structural boundary at time t, s t i is the surface traction vector at time t, D ijkl is the material elasticity tensor, and ɛ ij is the infinitesimal strain tensor.

The grid system is adjusted to accommodate the deformation of the structural body to avoid distortion due to significant deformation of the computational domain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, S., Tarbell, J.M. Oxygen Mass Transport in a Compliant Carotid Bifurcation Model. Ann Biomed Eng 34, 1389–1399 (2006). https://doi.org/10.1007/s10439-006-9155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9155-z

Keywords

Navigation