Skip to main content

Advertisement

Log in

Effect of Oxidative Stress on the Junctional Proteins of Cultured Cerebral Endothelial Cells

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

1. There is increasing evidence that the cerebral endothelium and the blood–brain barrier (BBB) plays an important role in the oxidative stress-induced brain damage. The aim of the present study was to investigate the role of interendothelial junctional proteins in the BBB permeability increase induced by oxidative stress.

2. For the experiments, we have used cultured cerebral endothelial cells exposed to hypoxia/reoxygenation or treated with the redox cycling quinone 2,3-Dimethoxy-1,4-naphthoquinone (DMNQ) in the presence or absence of glucose. The expression of junctional proteins and activation of mitogen activated protein kinases (MAPK) was followed by Western-blotting, the interaction of junctional proteins was investigated using coimmunoprecipitation.

3. Oxidative stress induces a downregulation of the tight junction protein occludin expression which is more pronounced in the absence of glucose. Furthermore, oxidative stress leads to disruption of the cadherin-β-catenin complex and an activation of extracellular signal-regulated kinase (ERK1/2), which is more intense in the absence of glucose.

4. We have shown that one of the causes of the BBB breakdown is probably the structural alteration of the junctional complex caused by oxidative stress, a process in which ERK1/2 may play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbruscato, T. J., and Davis, T. P. (1999a). Combination of hypoxia/aglycemia compromises in vitro blood–brain barrier integrity. J. Pharmacol. Exp. Ther. 289:668–675.

    CAS  Google Scholar 

  • Abbruscato, T. J., and Davis, T. P. (1999b). Protein expression of brain endothelial cell E-cadherin after hypoxia/aglycemia: Influence of astrocyte contact. Brain Res. 842:277–86.

    CAS  Google Scholar 

  • Andreeva, A. Y., Krause, E., Muller, E. C., Blasig, I. E., and Utepbergenov, D. I. (2001). Protein kinase C regulates the phosphorylation and cellular localization of occludin. J. Biol. Chem. 276:38480–38486.

    PubMed  CAS  Google Scholar 

  • Antonetti, D. A., Barber, A. J., Hollinger, L. A., Wolpert, E. B., and Gardner, T. W. (1999). Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J. Biol. Chem. 274:23463–23467.

    PubMed  CAS  Google Scholar 

  • Bresgen, N., Karlhuber, G., Krizbai, I., Bauer, H., Bauer, H. C., and Eckl, P. M. (2003). Oxidative stress in cultured cerebral endothelial cells induces chromosomal aberrations, micronuclei, and apoptosis. J. Neurosci. Res. 72:327–333.

    PubMed  CAS  Google Scholar 

  • Brillault, J., Berezowski, V., Cecchelli, R., and Dehouck, M. P. (2002). Intercommunications between brain capillary endothelial cells and glial cells increase the transcellular permeability of the blood–brain barrier during ischaemia. J. Neurochem. 83:807–817.

    PubMed  CAS  Google Scholar 

  • Bush, K. T., Tsukamoto, T., Nigam, S. K. (2000). Selective degradation of E-cadherin and dissolution of E-cadherin-catenin complexes in epithelial ischemia. Am. J. Physiol. Renal. Physiol. 278:F847–F852.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Lu, Q., Schneeberger, E. E., and Goodenough, D. A. (2000). Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol. Biol. Cell. 11:849–862.

    PubMed  CAS  Google Scholar 

  • Clarke, H., Soler, A. P., and Mullin, J. M. (2000). Protein kinase C activation leads to dephosphorylation of occludin and tight junction permeability increase in LLC-PK1 epithelial cell sheets. J. Cell Sci. 113:3187–3196.

    PubMed  CAS  Google Scholar 

  • Fischer, S., Wobben, M., Marti, H. H., Renz, D., and Schaper, W. (2002). Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc. Res. 63:70–80.

    PubMed  CAS  Google Scholar 

  • Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., and Tsukita, S. (1998). Claudin-1 and -2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141:1539–1550.

    PubMed  CAS  Google Scholar 

  • Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., and Tsukita, S. (1993). Occludin: A novel integral membrane protein localizing at tight junctions. J. Cell Biol. 123:1777–1788.

    PubMed  CAS  Google Scholar 

  • Granger, D. N. (1988). Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am. J. Physiol. 255:H1269–H1275.

    PubMed  CAS  Google Scholar 

  • Hess, D. C., Zhao, W., Carroll, J., McEachin, M., and Buchanan, K. (1994). Increased expression of ICAM-1 during reoxygenation in brain endothelial cells. Stroke. 25:1463–1467.

    PubMed  CAS  Google Scholar 

  • Hirase, T., Kawashima, S., Wong, E. Y., Ueyama, T., Rikitake, Y., Tsukita, S., Yokoyama, M., and Staddon, J. M. (2001). Regulation of tight junction permeability and occludin phosphorylation by RhoA-p160ROCK-dependent and -independent mechanisms. J. Biol. Chem. 276:10423–10431.

    PubMed  CAS  Google Scholar 

  • Kevil, C. G., Ohno, N., Gute, D. C., Okayama, N., Robinson, S. A., Chaney, E., and Alexander, J. S. (1998). Role of cadherin internalization in hydrogen peroxide-mediated endothelial permeability. Free Radic. Biol. Med. 24:1015–1022.

    PubMed  CAS  Google Scholar 

  • Kevil, C. G., Oshima, T., Alexander, B., Coe, L. L., and Alexander, J. S. (2000). H(2)O(2)-mediated permeability: Role of MAPK and occludin. Am. J. Physiol. Cell Physiol. 279:C21–C30.

    PubMed  CAS  Google Scholar 

  • Lagrange, P., Romero, I. A., Minn, A., and Revest, P. A. (1999). Transendothelial permeability changes induced by free radicals in an in vitro model of the blood–brain barrier. Free Radic. Biol. Med. 27:667–672.

    PubMed  CAS  Google Scholar 

  • Mark, K. S., and Davis, T. P. (2002). Cerebral microvascular changes in permeability and tight junctions induced by hypoxia-reoxygenation. Am. J. Physiol. Heart Circ. Physiol. 282:H1485–H1494.

    PubMed  CAS  Google Scholar 

  • Martin-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D., and Dejana, E. (1998). Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell Biol. 142:117–127.

    PubMed  CAS  Google Scholar 

  • McCord, J. M., and Roy, R. S. (1982). The pathophysiology of superoxide: Roles in inflammation and ischemia. Can. J. Physiol. Pharmacol. 60:1346–1352.

    PubMed  CAS  Google Scholar 

  • Mertsch, K., Grune, T., Siems, W. G., Ladhoff, A., Saupe, N., and Blasig, I. E. (1995). Hypoxia and reoxygenation of brain endothelial cells in vitro: A comparison of biochemical and morphological response. Cell Mol. Biol. (Noisy-le-grand). 41:243–353.

    CAS  Google Scholar 

  • North, A. J., Brannon, T. S., Wells, L. B., Campbell, W. B., and Shaul, P. W. (1994). Hypoxia stimulates prostacyclin synthesis in newborn pulmonary artery endothelium by increasing cyclooxygenase-1 protein. Circ. Res. 75:33–40.

    PubMed  CAS  Google Scholar 

  • Olesen, S. P. (1986). Rapid increase in blood–brain barrier permeability during severe hypoxia and metabolic inhibition. Brain Res. 368:24–29.

    PubMed  CAS  Google Scholar 

  • Pal, D., Audus, K. L., and Siahaan, T. J. (1997). Modulation of cellular adhesion in bovine brain microvessel endothelial cells by a decapeptide. Brain Res. 747:103–113.

    PubMed  CAS  Google Scholar 

  • Park, J. H., Okayama, N., Gute, D., Krsmanovic, A., Battarbee, H., and Alexander, J. S. (1999). Hypoxia/aglycemia increases endothelial permeability: Role of second messengers and cytoskeleton. Am. J. Physiol. 277:C1066–C1074.

    PubMed  CAS  Google Scholar 

  • Plateel, M., Dehouck, M. P., Torpier, G., Cecchelli, R., and Teissier, E. (1995). Hypoxia increases the susceptibility to oxidant stress and the permeability of the blood–brain barrier endothelial cell monolayer. J. Neurochem. 65:2138–2145.

    Article  PubMed  CAS  Google Scholar 

  • Rao, R. K., Basuroy, S., Rao, V. U., Karnaky, K. J., Jr., and Gupta, A. (2002). Tyrosine phosphorylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem. J. 368:471–481.

    PubMed  CAS  Google Scholar 

  • Suzuma, K., Takagi, H., Otani, A., and Honda, Y. (1998). Hypoxia and vascular endothelial growth factor stimulate angiogenic integrin expression in bovine retinal microvascular endothelial cells. Invest. Ophthalmol. Vis. Sci. 39:1028–1035.

    PubMed  CAS  Google Scholar 

  • Tontsch, U., and Bauer, H. C. (1989). Isolation, characterization, and long-term cultivation of porcine and murine cerebral capillary endothelial cells. Microvasc. Res. 37:148–161.

    PubMed  CAS  Google Scholar 

  • Traweger, A., Fang, D., Liu, Y. C., Stelzhammer, W., Krizbai, I. A., Fessler, F., Bauer, H. C., and Bauer, H. (2002). The tight junction-specific protein occludin is a functional target of the E3 ubiquitin protein ligase itch. J. Biol. Chem. 277:10201–10208.

    PubMed  CAS  Google Scholar 

  • Tsang, M. C., Lo, A. C., Cheung, P. T., Chung, S. S., and Chung, S. K. (2001). Perinatal hypoxia-/ischemia-induced endothelin-1 mRNA in astrocyte-like and endothelial cells. Neuroreport. 12:2265–2270.

    PubMed  CAS  Google Scholar 

  • Wachtel, M., Frei, K., Ehler, E., Bauer, C., Gassmann, M., and Gloor, S. M. (2002). Extracellular signal-regulated protein kinase activation during reoxygenation is required to restore ischaemia-induced endothelial barrier failure. Biochem. J. 367:873–879.

    PubMed  CAS  Google Scholar 

  • Wachtel, M., Frei, K., Ehler, E., Fontana, A., Winterhalter, K., and Gloor, S. M. (1999). Occludin proteolysis and increased permeability in endothelial cells through tyrosine phosphatase inhibition. J. Cell Sci. 112:4347–4356.

    PubMed  CAS  Google Scholar 

  • Ward, P. D., Klein, R. R., Troutman, M. D., Desai, S., and Thakker, D. R. (2002). Phospholipase C-gamma modulates epithelial tight junction permeability through hyperphosphorylation of tight junction proteins. J. Biol. Chem. 277:35760–35765.

    PubMed  CAS  Google Scholar 

  • Wu, S., Tamaki, N., Nagashima, T., and Yamaguchi, M. (1998) Reactive oxygen species in reoxygenation injury of rat brain capillary endothelial cells. Neurosurgery. 43:577–583.

    PubMed  CAS  Google Scholar 

  • Xu, J., He, L., Ahmed, S. H., Chen, S. W., Goldberg, M. P., Beckman, J. S., and Hsu, C. Y. (2000). Oxygen-glucose deprivation induces inducible nitric oxide synthase and nitrotyrosine expression in cerebral endothelial cells. Stroke. 31:1744–1751.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István A. Krizbai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krizbai, I.A., Bauer, H., Bresgen, N. et al. Effect of Oxidative Stress on the Junctional Proteins of Cultured Cerebral Endothelial Cells. Cell Mol Neurobiol 25, 129–139 (2005). https://doi.org/10.1007/s10571-004-1378-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-004-1378-7

Key words

Navigation