Skip to main content
Log in

The Effects of Morphology, Confluency, and Phenotype on Whole-Cell Mechanical Behavior

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Emerging evidence indicates that cellular mechanical behavior can be altered by disease, drug treatment, and mechanical loading. To effectively investigate how disease and mechanical or biochemical treatments influence cellular mechanical behavior, it is imperative to determine the source of large inter-cell differences in whole-cell mechanical behavior within a single cell line. In this study, we used the atomic force microscope to investigate the effects of cell morphological parameters and confluency on whole-cell mechanical behavior for osteoblastic and fibroblastic cells. For nonconfluent cells, projected nucleus area, cell area, and cell aspect ratio were not correlated with mechanical behavior (p ≥ 0.46), as characterized by a parallel-spring recruitment model. However, measured force-deformation responses were statistically different between osteoblastic and fibroblastic cells (p < 0.001) and between confluent and nonconfluent cells (p < 0.001). Osteoblastic cells were 2.3–2.8 times stiffer than fibroblastic cells, and confluent cells were 1.5–1.8 times stiffer than nonconfluent cells. The results indicate that structural differences related to phenotype and confluency affect whole-cell mechanical behavior, while structural differences related to global morphology do not. This suggests that cytoskeleton structural parameters, such as filament density, filament crosslinking, and cell–cell and cell–matrix attachments, dominate inter-cell variability in whole-cell mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.

Similar content being viewed by others

REFERENCES

  1. A-Hassan, E., W. F. Heinz, M. D. Antonik, N. P. D’Costa, S. Nageswaran, C. Schoenenberger, and J. H. Hoh. Relative microelastic mapping of living cells by atomic force microscopy. Biophys. J. 74:1564–1578, 1998.

    PubMed  CAS  Google Scholar 

  2. Butt, H. J., and M. Jaschke. Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7, 1995.

    Article  Google Scholar 

  3. Charras, G. T., and M. A. Horton. Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys. J. 82:2970–2981, 2002.

    PubMed  CAS  Google Scholar 

  4. Charras, G. T., P. P. Lehenkari, and M. A. Horton. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86:85–95, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, C. S., J. L. Alonso, E. Ostuni, G. M. Whitesides, and D. E. Ingber. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307:355–361, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. Chen, N. X., D. J. Geist, D. C. Genetos, F. M. Pavalko, and R. L. Duncan. Fluid shear-induced NFkappaB translocation in osteoblasts is mediated by intracellular calcium release. Bone 33:399–410, 2003.

    Article  PubMed  CAS  Google Scholar 

  7. Collinsworth, A. M., S. Zhang, W. E. Kraus, and G. A. Truskey. Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am. J. Physiol. Cell Physiol. 283:C1219–C1227, 2002.

    PubMed  CAS  Google Scholar 

  8. Costa, K. D. Single-cell elastography: Probing for disease with the atomic force microscope. Dis. Markers 19:139–154, 2004.

    Google Scholar 

  9. Coughlin, M. F., and D. Stamenovic. A prestressed cable network model of the adherent cell cytoskeleton. Biophys. J. 84:1328–1336, 2003.

    PubMed  CAS  Google Scholar 

  10. Freshney, R. I. Culture of Animal Cells. New York: Wiley-Liss, 2000.

    Google Scholar 

  11. Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.

    Article  PubMed  CAS  Google Scholar 

  12. Glogauer, M., P. Arora, G. Yao, I. Sokholov, J. Ferrier, and C. A. McCulloch. Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J. Cell Sci. 110:11–21, 1997.

    PubMed  CAS  Google Scholar 

  13. Goldmann, W. H., R. Galneder, M. Ludwig, W. Xu, E. D. Adamson, N. Wang, and R. M. Ezzell. Differences in elasticity of vinculin-deficient F9 cells measured by magnetometry and atomic force microscopy. Exp. Cell Res. 239:235–242, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Grubbs, F. E. Procedures for detecting outlying observations in samples. Technometrics 11:1–21, 1969.

    Article  Google Scholar 

  15. Hale, J. E., J. E. Chin, Y. Ishikawa, P. R. Paradiso, and R. E. Wuthier. Correlation between distribution of cytoskeletal proteins and release of alkaline phosphatase-rich vesicles by epiphyseal chondrocytes in primary culture. Cell Motil. 3:501–512, 1983.

    Article  PubMed  CAS  Google Scholar 

  16. Hutter, J. L., and J. Bechhoefer. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64:1868–1873, 1993.

    Article  CAS  Google Scholar 

  17. Jaasma, M. J., W. M. Jackson, and T. M. Keaveny. Measurement and characterization of whole-cell mechanical behavior. Ann. Biomed. Eng., DOI: 10.1007/s10439-006-9081-0.

  18. Janmey, P. A. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78:763–781, 1998.

    PubMed  CAS  Google Scholar 

  19. Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelly, R. Hochmuth, and F. Guilak. Alterations in the Young's modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32:119–127, 1999.

    Article  PubMed  CAS  Google Scholar 

  20. Ko, K. S., and C. A. McCulloch. Partners in protection: Interdependence of cytoskeleton and plasma membrane in adaptations to applied forces. J. Membr. Biol. 174:85–95, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. Lampugnani, M. G., M. Corada, P. Andriopoulou, S. Esser, W. Risau, and E. Dejana. Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J. Cell Sci. 110:2065–2077, 1997.

    PubMed  CAS  Google Scholar 

  22. Lekka, M., P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A. Z. Hrynkiewicz. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur. Biophys. J. 28:312–316, 1999.

    Article  PubMed  CAS  Google Scholar 

  23. Luegmayr, E., H. Glantschnig, F. Varga, and K. Klaushofer. The organization of adherens junctions in mouse osteoblast-like cells (MC3T3-E1) and their modulation by triiodothyronine and 1,25-dihydroxyvitamin D3. Histochem. Cell Biol. 113:467–478, 2000.

    PubMed  CAS  Google Scholar 

  24. Mahaffy, R. E., C. K. Shih, F. C. MacKintosh, and J. Kas. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85:880–883, 2000.

    Article  PubMed  CAS  Google Scholar 

  25. Malek, A. M., and S. Izumo. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell Sci. 109 (Pt 4):713–726, 1996.

    PubMed  CAS  Google Scholar 

  26. Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U.S.A. 94:849–854, 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Mathur, A. B., A. M. Collinsworth, W. M. Reichert, W. E. Kraus, and G. A. Truskey. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. J. Biomech. 34:1545–1553, 2001.

    Article  PubMed  CAS  Google Scholar 

  28. McGarry, J., J. Klein-Nulend, and P. J. Prendergast. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E(2) in osteocytes and osteoblasts. Biochem. Biophys. Res. Commun. 330:341–348, 2005.

    Article  PubMed  CAS  Google Scholar 

  29. Nagayama, M., H. Haga, and K. Kawabata. Drastic change of local stiffness distribution correlating to cell migration in living fibroblasts. Cell Motil. Cytoskeleton 50:173–179, 2001.

    Article  PubMed  CAS  Google Scholar 

  30. Pasternak, C., S. Wong, and E. L. Elson. Mechanical function of dystrophin in muscle cells. J. Cell Biol. 128:355–361, 1995.

    Article  PubMed  CAS  Google Scholar 

  31. Radmacher, M., M. Fritz, C. M. Kacher, J. P. Cleveland, and P. K. Hansma. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70:556–567, 1996.

    PubMed  CAS  Google Scholar 

  32. Rotsch, C., and M. Radmacher. Drug-induced changes in cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys. J. 78:520–535, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. Sato, M., M. J. Levesque, and R. M. Nerem. Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress. Arteriosclerosis 7:276–286, 1987.

    PubMed  CAS  Google Scholar 

  34. Sato, M., K. Nagayama, N. Kataoka, M. Sasaki, and K. Hane. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed to shear stress. J. Biomech. 33:127–135, 2000.

    Article  PubMed  CAS  Google Scholar 

  35. Sato, M., D. P. Theret, L. T. Wheeler, N. Ohshima, and R. Nerem. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. J. Biomech. Eng. 112:263–268, 1990.

    Article  PubMed  CAS  Google Scholar 

  36. Smith, P. G., L. Deng, J. J. Fredberg, and G. N. Maksym. Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. Am. J. Physiol. Lung Cell. Mol. Physiol. 285:L456–L463, 2003.

    PubMed  CAS  Google Scholar 

  37. Sokal, R. R., and F. J. Rohlf. Biometry. New York: W. H. Freeman, 1995.

    Google Scholar 

  38. Stamenovic, D., and M. F. Coughlin. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: A quantitative analysis. J. Theor. Biol. 201:63–74, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Stamenovic, D., and D. E. Ingber. Models of cytoskeletal mechanics of adherent cells. Biomech. Model. Mechanobiol. 1:95–108, 2002.

    Article  PubMed  CAS  Google Scholar 

  40. Sugawara, M., Y. Ishida, and H. Wada. Mechanical properties of sensory and supporting cells in the organ of Corti of the guinea pig cochlea—study by atomic force microscopy. Hear. Res. 192:57–64, 2004.

    Article  PubMed  Google Scholar 

  41. Wu, H. W., T. Kuhn, and V. T. Moy. Mechanical properties of L929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20:389–397, 1998.

    PubMed  CAS  Google Scholar 

  42. Wu, Z. Z., G. Zhang, M. Long, H. B. Wang, G. B. Song, and S. X. Cai. Comparison of the viscoelastic properties of normal hepatocytes and hepatocellular carcinoma cells under cytoskeletal perturbation. Biorheology 37:279–290, 2000.

    PubMed  CAS  Google Scholar 

  43. Xu, F., and Z. J. Zhao. Cell density regulates tyrosine phosphorylation and localization of focal adhesion kinase. Exp. Cell Res. 262:49–58, 2001.

    Article  PubMed  CAS  Google Scholar 

  44. Zar, J. H. Biostatistical Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1984.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Funding for this study was provided by the National Science Foundation (BES-0201951) and the Whitaker Foundation Graduate Fellowship Program (WMJ). The authors would like to thank May Chu and Raymond Tang for technical assistance. The authors would also like to thank Terry D. Johnson for the generous gift of the NIH3T3 fibroblasts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony M. Keaveny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaasma, M.J., Jackson, W.M. & Keaveny, T.M. The Effects of Morphology, Confluency, and Phenotype on Whole-Cell Mechanical Behavior. Ann Biomed Eng 34, 759–768 (2006). https://doi.org/10.1007/s10439-005-9052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-9052-x

Keywords

Navigation