Skip to main content

Mechanical Load Transfer at the Cellular Level

  • Chapter
  • First Online:
Multiscale Mechanobiology in Tissue Engineering

Part of the book series: Frontiers of Biomechanics ((FB,volume 3))

  • 780 Accesses

Abstract

Cells interact with their extracellular environment, from which they gather information that influences their behaviour. The cytoskeleton provides a bridge to transmit information between the extracellular and the intracellular environments. It has been suggested that the CSK components may have distinct mechanical roles in the cell and that they might form the structure that defines cell rigidity. One approach to studying the mechanosensing processes is to understand the mechanical properties of cells’ constitutive components individually. In this chapter we describe the development of a multi-structural 3D finite element model of a single-adherent cell to investigate the biophysical differences of the mechanical role of each cytoskeleton component. The model includes prestressed actin bundles and microtubule within the cytoplasm and nucleus, which are surrounded by the actin cortex.

With the multi-structural model, we predicted that actin cortex and microtubules were targeted to respond to compressive loads, while actin bundles and microtubules were major components in maintaining cell forces during stretching. Additionally, corroboration of the multi-structural model regarding its ability to identify the role of the CSK components was obtained by comparing the numerical predictions with AFM force measurements on U2OS-osteosarcoma cells exposed to different cytoskeleton-disrupting drugs. Overall, the multi-structural model not only illustrates that a combination of cytoskeletal structures with their own properties is necessary for a complete description of cellular mechanics but also clarifies the effects of cytoskeletal heterogeneity on the interpretation of force-deformation measurements.

This chapter forms part the PhD thesis of Sara Barreto available here: http://etheses.whiterose.ac.uk/4928/

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Lacroix .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barreto, S., Lacroix, D. (2019). Mechanical Load Transfer at the Cellular Level. In: Multiscale Mechanobiology in Tissue Engineering. Frontiers of Biomechanics, vol 3. Springer, Singapore. https://doi.org/10.1007/978-981-10-8075-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8075-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8074-6

  • Online ISBN: 978-981-10-8075-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics