Skip to main content
Log in

Endothelial Cell–Smooth Muscle Cell Co-Culture in a Perfusion Bioreactor System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Vascular endothelial cells (EC) are exposed to a complex biomechanical environment in vivo and are responsible for relaying important messages to the underlying tissue. EC and smooth muscle cells (SMC) communicate to regulate vascular development and function. In this work, a vascular perfusion bioreactor is used to grow tubular constructs seeded with EC and SMC under pulsatile shear stress in long-term co-culture to study the effects of EC on SMC function. SMC seeded into porous poly(glycolic acid) tubular scaffolds are cultured in the bioreactor for 25 days. Constructs are seeded with EC on day 10 or day 23 creating 2-day (short-term) or 15-day (long-term) EC and SMC co-cultures. Long-term EC–SMC co-culture significantly increases cell proliferation and downregulates collagen and proteoglycan deposition compared to short-term co-culture. After 25 days of culture, 15-day co-culture constructs have a more uniform cell distribution across the construct thickness and SMC express a more contractile phenotype compared to 2-day co-culture constructs. These data demonstrate strong interactions between SMC and EC in the bioreactor under physiologically relevant conditions. Thus, the vascular construct perfusion bioreactor is an important tool to investigate cell–cell and cell–extracellular matrix interactions in vascular cell biology and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Absher, M., J. Woodcock-Mitchell, J. Mitchell, L. Baldor, R. Low, and D. Warshaw. Characterization of vascular smooth muscle cell phenotype in long-term culture. In Vitro Cell Dev. Biol. 25(2):183–192, 1989.

    PubMed  Google Scholar 

  2. Antonelli-Orlidge, A., K. B. Saunders, S. R. Smith, and P. A. D’Amore. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes. Proc. Natl. Acad. Sci. U.S.A. 86(12):4544–4548, 1989.

    PubMed  Google Scholar 

  3. Bernanke, D. H., and J. M. Velkey. Development of the coronary blood supply: Changing concepts and current ideas. Anat. Rec. 269(4):198–208, 2002.

    Article  PubMed  Google Scholar 

  4. Campbell, G. CJH: Phenotypic Modulation of Smooth Muscle Cells in Primary Culture. Vacular Smooth Muscle in Culture. Boston: CRC Press, 1985.

    Google Scholar 

  5. Campbell, J. H., and G. R. Campbell. Endothelial cell influences on vascular smooth muscle phenotype. Annu. Rev. Physiol. 48:295–306, 1986.

    Article  PubMed  Google Scholar 

  6. Casscells, W. Migration of smooth muscle and endothelial cells. Critical events in restenosis. Circulation 86(3):723–729, 1992.

    PubMed  Google Scholar 

  7. Chiu, J. J., L. J. Chen, C. N. Chen, P. L. Lee, and C. I. Lee. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells. J. Biomech. 37(4):531–539, 2004.

    Article  PubMed  Google Scholar 

  8. Chiu, J. J., L. J. Chen, P. L. Lee, C. I. Lee, L. W. Lo, S. Usami, and S. Chien. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 101(7):2667–2674, 2003.

    Article  PubMed  Google Scholar 

  9. Davies, P. F. Vascular cell interactions with special reference to the pathogenesis of atherosclerosis. Lab. Invest. 55(1):5–24, 1986.

    PubMed  Google Scholar 

  10. Dora, K. A. Cell–cell communication in the vessel wall. Vasc. Med. 6(1):43–50, 2001.

    Article  PubMed  Google Scholar 

  11. Farndale, R. W., C. A. Sayers, and A. J. Barrett. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res. 9(4):247–248, 1982.

    PubMed  Google Scholar 

  12. Fillinger, M. F., S. E. O’Connor, R. J. Wagner, and J. L. Cronenwett. The effect of endothelial cell coculture on smooth muscle cell proliferation. J. Vasc. Surg. 17(6):1058–1067 (discussion 1067–1068), 1993.

    Article  PubMed  Google Scholar 

  13. Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res. 60(4):607–612, 2002.

    Article  PubMed  Google Scholar 

  14. Hayter, A. Probability and Statistics for Engineers and Scientists. Boston: PWS, 1996.

    Google Scholar 

  15. Heydarkhan-Hagvall, S., G. Helenius, B. R. Johansson, J. Y. Li, E. Mattsson, and B. Risberg. Co-culture of endothelial cells and smooth muscle cells affects gene expression of angiogenic factors. J. Cell Biochem. 89(6):1250–1259, 2003.

    Article  PubMed  Google Scholar 

  16. Imberti, B., D. Seliktar, R. M. Nerem, and A. Remuzzi. The response of endothelial cells to fluid shear stress using a co-culture model of the arterial wall. Endothelium 9(1):11–23, 2002.

    Article  PubMed  Google Scholar 

  17. Kim, B. S., and D. J. Mooney. Engineering smooth muscle tissue with a predefined structure. J. Biomed. Mater. Res. 41(2):322–332, 1998.

    PubMed  Google Scholar 

  18. L’Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56, 1998.

    PubMed  Google Scholar 

  19. Lyubimov, E. V., and A. I. Gotlieb. Smooth muscle cell growth in monolayer and aortic organ culture is promoted by a nonheparin binding endothelial cell-derived soluble factor/s. Cardiovasc. Pathol. 13(3):139–145, 2004.

    Article  PubMed  Google Scholar 

  20. Merrilees, M. J., J. H. Campbell, E. Spanidis, and G. R. Campbell. Glycosaminoglycan synthesis by smooth muscle cells of differing phenotype and their response to endothelial cell conditioned medium. Atherosclerosis 81(3):245–254, 1990.

    PubMed  Google Scholar 

  21. Merrilees, M. J., and L. Scott. Interaction of aortic endothelial and smooth muscle cells in culture. Effect on glycosaminoglycan levels. Atherosclerosis 39(2):147–161, 1981.

    PubMed  Google Scholar 

  22. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown in vitro. Science 284(5413):489–493, 1999.

    Article  PubMed  Google Scholar 

  23. Orlidge, A., and P. A. D’Amore. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J. Cell Biol. 105(3):1455–1462, 1987.

    PubMed  Google Scholar 

  24. Powell, R. J., J. Hydowski, O. Frank, J. Bhargava, and B. E. Sumpio. Endothelial cell effect on smooth muscle cell collagen synthesis. J. Surg. Res. 69(1):113–118, 1997.

    PubMed  Google Scholar 

  25. Risau, W. Differentiation of endothelium. FASEB J. 9(10):926–933, 1995.

    PubMed  Google Scholar 

  26. Saunders, K. B., and P. A. D’Amore. An in vitro model for cell–cell interactions. In Vitro Cell Dev. Biol. 28A(7/8):521–528, 1992.

    PubMed  Google Scholar 

  27. Shireman, P. K., and W. H. Pearce. Endothelial cell function: Biologic and physiologic functions in health and disease. AJR Am. J. Roentgenol. 166(1):7–13, 1996.

    PubMed  Google Scholar 

  28. Shum-Tim, D., U. Stock, J. Hrkach, T. Shinoka, J. Lien, M. A. Moses, A. Stamp, G. Taylor, A. M. Moran, W. Landis, R. Langer, J. P. Vacanti, and J. E. Mayer Jr. Tissue engineering of autologous aorta using a new biodegradable polymer. Ann. Thorac Surg. 68(6):2298–2304 (discussion 2305), 1999.

    PubMed  Google Scholar 

  29. Wada, Y., A. Sugiyama, T. Kohro, M. Kobayashi, M. Takeya, M. Naito, and T. Kodama. In vitro model of atherosclerosis using coculture of arterial wall cells and macrophage. Yonsei Med. J. 41(6):740–755, 2000.

    PubMed  Google Scholar 

  30. Waybill, P. N., V. M. Chinchilli, and B. J. Ballermann. Smooth muscle cell proliferation in response to co-culture with venous and arterial endothelial cells. J. Vasc. Interv. Radiol. 8(3):375–381, 1997.

    PubMed  Google Scholar 

  31. Waybill, P. N., and L. J. Hopkins. Arterial and venous smooth muscle cell proliferation in response to co-culture with arterial and venous endothelial cells. J. Vasc. Interv. Radiol. 10(8):1051–1057, 1999.

    PubMed  Google Scholar 

  32. Williams, C., and T. M. Wick. Perfusion bioreactor for small diameter tissue-engineered arteries. Tissue Eng. 10(5/6):930–941, 2004.

    PubMed  Google Scholar 

  33. Woessner, J. F. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch. Biochem. Biophys. 93:440–447, 1961.

    PubMed  Google Scholar 

  34. Ziegler, T., R. W. Alexander, and R. M. Nerem. An endothelial cell–smooth muscle cell co-culture model for use in the investigation of flow effects on vascular biology. Ann. Biomed. Eng. 23(3):216–225, 1995.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Wick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, C., Wick, T.M. Endothelial Cell–Smooth Muscle Cell Co-Culture in a Perfusion Bioreactor System. Ann Biomed Eng 33, 920–928 (2005). https://doi.org/10.1007/s10439-005-3238-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-3238-0

Keywords

Navigation