Skip to main content
Log in

The Local Matrix Distribution and the Functional Development of Tissue Engineered Cartilage, a Finite Element Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Assessment of the functionality of tissue engineered cartilage constructs is hampered by the lack of correlation between global measurements of extra cellular matrix constituents and the global mechanical properties. Based on patterns of matrix deposition around individual cells, it has been hypothesized previously, that mechanical functionality arises when contact occurs between zones of matrix associated with individual cells. The objective of this study is to determine whether the local distribution of newly synthesized extracellular matrix components contributes to the evolution of the mechanical properties of tissue engineered cartilage constructs. A computational homogenization approach was adopted, based on the concept of a periodic representative volume element. Local transport and immobilization of newly synthesized matrix components were described. Mechanical properties were taken dependent on the local matrix concentration and subsequently the global aggregate modulus and hydraulic permeability were derived. The transport parameters were varied to assess the effect of the evolving matrix distribution during culture. The results indicate that the overall stiffness and permeability are to a large extent insensitive to differences in local matrix distribution. This emphasizes the need for caution in the visual interpretation of tissue functionality from histology and underlines the importance of complementary measurements of the matrix’s intrinsic molecular organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basser, P. J., R. Schneiderman., R. A. Bank, E. Wachtel., and A. Maroudas. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch. Biochem. Biophys. 351(2):207–219, 1998.

    Google Scholar 

  2. Breuls, R. G. M., B. G. Sengers, C. W. J. Oomens, C. V. C. Bouten, and F. P. T. Baaijens. Predicting local cell deformations in engineered tissue constructs: A multilevel finite element approach. J. Biomech. Eng. 124:198–207, 2002.

    Google Scholar 

  3. Bryant, S. J. and K. S. Anseth. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J. Biomed. Mater. Res. 64A:70–79, 2003.

    Google Scholar 

  4. Bursac, P. M., L. E. Freed, R. J. Biron, and G. Vunjak-Novakovic. Mass transfer studies of tissue engineered cartilage. Tissue Eng. 2(2):141–150, 1996.

    Google Scholar 

  5. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108:1497–1508, 1995.

    Google Scholar 

  6. Buschmann, M. D. and A. J. Grodzinsky. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J. Biomech. Eng. 117:179–192, 1995.

    Google Scholar 

  7. Buschmann, M. D., Y. J. Kim, M. Wong., E. Frank., E. B. Hunziker, and A. J. Grodzinsky. Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch. Biochem. Biophys. 366(1):1–7, 1999.

    Google Scholar 

  8. Butler, D. L., S. A. Goldstein, and F. Guilak. Functional tissue engineering: The role of biomechanics. J. Biomech. Eng. 122:570–575, 2000.

    Google Scholar 

  9. Carver, S. E. and C. A. Heath. Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Biotechnol. Bioeng. 65:274–281, 1999.

    Google Scholar 

  10. Caterson, B., C. R. Flannery, C. E. Hughes, and C. B. Little. Mechanism involved in cartilage proteoglycan catabolism. Matrix Biol. 19:333–344, 2000.

    Google Scholar 

  11. Chang, S. C. N., J. A. Rowley, G. Tobias., N. G. Genes, A. K. Roy, D. J. Mooney, C. A. Vacanti, and L. J. Bonassar. Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J. Biomed. Mater. Res. 55:503–511, 2001.

    Google Scholar 

  12. Chen, S. S., Y. H. Falcovitz, R. Schneiderman., A. Maroudas., and R. L. Sah. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: Relationship to fixed charge density. Osteoarthritis Cartilage 9:561–569, 2001.

    Google Scholar 

  13. Comper, W. D. and R. P. W. Williams. Hydrodynamics of concentrated proteoglycan solutions. J. Biol. Chem. 262(28):13464–13471, 1987.

    Google Scholar 

  14. Davisson, T., S. Kunig., A. Chen., R. Sah., and A. Ratcliffe. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res. 20:842–848, 2002.

    Google Scholar 

  15. Dimicco, M. A. and R. L. Sah. Dependence of cartilage matrix composition on biosynthesis, diffusion, and reaction. Transport Porous Media 50:57–73, 2003.

    Google Scholar 

  16. Freed, L. E., A. P. Hollander, I. Martin., J. R. Barry, R. Langer., and G. Vunjak-Novakovic. Chondrogenesis in a cell-polymer-bioreactor system. Exp. Cell Res. 240:58–65, 1998.

    Google Scholar 

  17. Freed, L. E., R. Langer., I. Martin., N. R. Pellis, and G. Vunjak-Novakovic. Tissue engineering of cartilage in space. Proc. Nat. Acad. Sci. USA 94:13885–13890, 1997.

    Google Scholar 

  18. Freed, L. E., I. Martin., and G. Vunjak-Novakovic. Frontiers in tissue engineering: In vitro modulation of chondrogenesis. Clin. Orthop. 367S:S46–S58, 1999.

    Google Scholar 

  19. Gribbon, P. and T. E. Hardingham. Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching. Biophys. J. 75:1032–1039, 1998.

    Google Scholar 

  20. Gribbon, P., B. C. Heng, and T. E. Hardingham. The molecular basis of the solution properties of hyaluronan investigated by confocal fluorescence recovery after photobleaching. Biophys. J. 77:2210–2216, 1999.

    Google Scholar 

  21. Gu, W. Y., H. Yao., C. Y. Huang, and H. S. Cheung. New insight into deformation-dependent hydraulic permeability of gels and cartilage, and dynamic behavior of agarose gels in confined compression. J. Biomech. 36:593–598, 2003.

    Google Scholar 

  22. Guilak, F. and V. C. Mow. The mechanical environment of the chondrocyte: A biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33:1663–1673, 2000.

    Google Scholar 

  23. Hascall, V. C., J. D. Sandy, and C. J. Handley. “Regulation of proteoglycan metabolism in articular cartilage.” In: Biology of the Synovial Joint, edited by C.W. Archer, B. Caterson., and M. Benjamin. Amsterdam: Harwood Academic Pub., 1999, pp. 101–120.

  24. Hasler, E. M., W. Herzog., J. Z. Wu, W. Müller, and U. Wyss. Articular cartilage biomechanics: Theoretical models, material properties, and biosynthetic response. Crit. Rev. Biomed. Eng. 27(6):415–488, 1999.

    Google Scholar 

  25. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543, 2000.

    Google Scholar 

  26. Jones, W. R., H. P. Ting-Beall, G. M. Lee, S. S. Kelley, R. M. Hochmuth, and F. Guilak. Alterations in the young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32:119–127, 1999.

    Google Scholar 

  27. Kaasschieter, E. F. and A. J. M. Huijben. Mixed-hybrid finite elements and streamline computation for the potential flow problem. Num. Meth. Part. Diff. Eq. 8:221–266, 1992.

    MATH  Google Scholar 

  28. Klisch, S. M., S. S. Chen, R. L. Sah, and A. Hoger. A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants. J. Biomech. Eng. 125:169–179, 2003.

    Google Scholar 

  29. Kouznetsova, V., W. A. M. Brekelmans, and F. P. T. Baaijens. An approach to micro-macro modeling of heterogeneous materials. Comp. Mech. 27(1):37–48, 2001.

    MATH  Google Scholar 

  30. LeBaron, R. G. and K. A. Athanasiou. Ex vivo synthesis of articular cartilage. Biomaterials 21:2575–2587, 2000.

    Google Scholar 

  31. Leddy, H. A. and F. Guilak. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann. Biomed. Eng. 31:753–760, 2003.

    Google Scholar 

  32. Lee, C. R., A. J. Grodzinsky, and M. Spector. Biosynthetic response of passaged chondrocytes in a type ii collagen scaffold to mechanical compression. J. Biomed. Mater. Res. 64A:560–569, 2003.

    Google Scholar 

  33. Lee, D. A., M. M. Knight, J. F. Bolton, B. D. Idowu, M. V. Kayser, and D. L. Bader. Chondrocyte deformation within compressed agarose constructs at the cellular and sub-cellular levels. J. Biomech. 33:81–95, 2000.

    Google Scholar 

  34. Maroudas, A. Physiochemical properties of cartilage in the light of ion exchange theory. Biophys. J. 8:575–595, 1968.

    Google Scholar 

  35. Martin, I., B. Obradovic., L. E. Freed, and G. Vunjak-Novakovic. Method for quantitative analysis of glycosaminoglycan distribution in cultured natural and engineered cartilage. Ann. Biomed. Eng. 27:656–662, 1999.

    Google Scholar 

  36. Martin, I., B. Obradovic., S. Treppo., A. J. Grodzinsky, R. Langer., L. E. Freed, and G. Vunjak-Novakovic. Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37:141–147, 2000.

    Google Scholar 

  37. Mauck, R. L., S. B. Nicoll, S. L. Seyhan, G. A. Athesian, and C. T. Hung. Synergetic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9(4):597–611, 2003.

    Google Scholar 

  38. Mauck, R. L., S. L. Seyhan, G. A. Athesian, and C. T. Hung. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 30:1046–1056, 2002.

    Google Scholar 

  39. Mauck, R. L., M. A. Soltz, C. C. B. Wang, D. D. Wong, P. H. G. Chao, W. B. Valhmu, C. T. Hung, and G. A. Athesian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Google Scholar 

  40. Mauck, R. L., C. C. B. Wang, E. S. Oswald, G. A. Athesian, and C. T. Hung. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 11:879–890, 2003.

    Google Scholar 

  41. Mow, V. C. and A. Ratcliffe. “Structure and function of articular cartilage and meniscus.” In: Basic Orthopaedic Biomechanics, edited by V. C. Mow and W.C. Hayes. New York: Raven Press, 1997, pp. 113–177.

    Google Scholar 

  42. Nimer, E., R. Schneiderman., and A. Maroudas. Diffusion and partition of solutes in cartilage under static load. Biophys. Chem. 106:125–146, 2003.

    Google Scholar 

  43. Obradovic, B., J. H. Meldon, L. E. Freed, and G. Vunjak-Novakovic. Glycosaminoglycan deposition in engineered cartilage: Experiments and mathematical model. AIChE J. 46(9):1860–1871, 2000.

    Google Scholar 

  44. Pei, M., G. Seidel., G. Vunjak-Novakovic, and L. E. Freed. Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem. Biophys. Res. Commun. 294:149–154, 2002.

    Google Scholar 

  45. Pluen, A., P. A. Netti, R. K. Jain, and D. A. Berk. Diffusion of macromolecules in agarose gels: Comparison of linear and globular configurations. Biophys. J. 77:542–552, 1999.

    Article  Google Scholar 

  46. Quinn, T. M., A. J. Grodzinsky, M. D. Buschmann, Y. J. Kim, and E. B. Hunziker. Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J. Cell Sci. 111:573–583, 1998.

    Google Scholar 

  47. Quinn, T. M., P. Schmid., E. B. Hunziker, and A. J. Grodzinsky. Proteoglycan deposition around chondrocytes in agarose culture: Construction of a physical and biological interface for mechanotransduction in cartilage. Biorheology 39:27–37, 2002.

    Google Scholar 

  48. Rotter, N., L. J. Bonassar, G. Tobias., M. Lebl., A. K. Roy, and C. A. Vacanti. Age dependence of biochemical and biomechanical properties of tissue-engineered human septal cartilage. Biomaterials 23:3087–3094, 2002.

    Google Scholar 

  49. Sah, R. L., S. B. Trippel, and A. J. Grodzinsky. Differential effects of serum, insulin-like growth factor-i, and fibroblast growth factor-2 on the maintenance of cartilage physical properties during long-term culture. J. Orthop. Res. 14:44–52, 1996.

    Google Scholar 

  50. Sah, R. L. Y., J. Y. H. Doong, A. J. Grodzinsky, A. H. K. Plaas, and J. D. Sandy. Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants. Arch. Biochem. Biophys. 286(1):20–29, 1991.

    Google Scholar 

  51. Sah, R. L. Y., A. J. Grodzinsky, A. H. K. Plaas, and J. D. Sandy. Effects of tissue compression on the hyaluronate-binding properties of newly synthesized proteoglycans in cartilage explants. Biochem. J. 167:803–808, 1990.

    Google Scholar 

  52. Sandy, J. D., J. R. O’Neill, and L. C. Ratzlaff. Acquisition of hyaluronate-binding affinity in vivo by newly synthesized cartilage proteoglycans. Biochem. J. 258:875–880, 1989.

    Google Scholar 

  53. Sandy, J. D. and A. H. K. Plaas. Age-related changes in the kinetics of release of proteoglycans from normal rabbit cartilage explants. J. Orthop. Res. 4:263–272, 1986.

    Google Scholar 

  54. Segal, G. SEPRAN User’s Manual. Leidschendam, The Netherlands: Ingenieursbureau SEPRA, 2003, pp. 648.

  55. Smit, R. J. M., W. A. M. Brekelmans, and H. E. H. Meijer. Prediction of the mechanical behavior of non-linear heterogeneous systems by multi-level finite element modeling. Comp. Meth. Appl. Mech. Eng. 155:181–192, 1998.

    MATH  Google Scholar 

  56. Stockwell, R. A. “Metabolism of cartilage.” In: Cartilage, Volume 1: Structure, Function, and Biochemistry, edited by B.K. Hall. Orlando: Academic Press, 1983, pp. 253–280.

    Google Scholar 

  57. Thomas, J. M. Sur l’analyse numérique des méthodes d’eléments finis hybrides et mixtes. Ph.D. thesis, Université Pierre et Marie Curie, Paris 1977.

  58. Treppo, S., H. Koepp., E. C. Quan, A. A. Cole, K. E. Kuettner, and A. J. Grodzinsky. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res. 18:739–748, 2000.

    Google Scholar 

  59. Vunjak-Novakovic, G., I. Martin., B. Obradovic., S. Treppo., A. J. Grodzinsky, R. Langer., and L.E. Freed. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J. Orthop. Res. 17:130–138, 1999.

    Google Scholar 

  60. Vunjak-Novakovic, G., B. Obradovic., I. Martin., P. M. Bursac, L. E. Langer, and R. Freed. Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14:193–202, 1998.

    Google Scholar 

  61. Williamson, A. K., A. C. Chen, and R. L. Sah. Compressive properties and function-composition relationships of developing bovine articular cartilage. J. Orthop. Res. 19:1113–1121, 2001.

    Google Scholar 

  62. Wilson, C. G., L. J. Bonassar, and S. S. Kohles. Modeling the dynamic composition of engineered cartilage. Arch. Biochem. Biophys. 408:246–254, 2002.

    Google Scholar 

  63. Wong, M., M. Ponticiello., V. Kovanen., and J. S. Jurvelin. Volumetric changes of articular cartilage during stress relaxation in unconfined compression. J. Biomech. 33:1049–1054, 2000.

    Google Scholar 

  64. Wu, J. Z., W. Herzog., and M. Epstein. Modelling of location- and time-dependent deformation of choncrocytes during cartilage loading. J. Biomech. 32:563–572, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Sengers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sengers, B.G., van Donkelaar, C.C., Oomens, C.W.J. et al. The Local Matrix Distribution and the Functional Development of Tissue Engineered Cartilage, a Finite Element Study. Ann Biomed Eng 32, 1718–1727 (2004). https://doi.org/10.1007/s10439-004-7824-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-004-7824-3

Navigation