Skip to main content
Log in

Multiple relaxation mechanism-based thermo-mechanical constitutive model describing cyclic shape memory effect of shape memory polyurethane

基于多级松弛机制的形状记忆聚氨酯循环热-力学本构模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

As an inherent property of the shape memory polymers (SMPs), relaxation plays a crucial role in their mechanical deformation and shape memory effect (SME). During the shape memory processes, relaxation behavior can be divided into short-, medium-, and long-term mechanisms that collectively contribute to the multiple relaxation mechanisms. In this study, based on the multiple relaxation mechanisms, we establish a thermo-mechanical constitutive model for the thermo-induced shape memory polyurethane (TSMPU) within the finite deformation framework. Additionally, the effect of temperature on mechanical deformation is further optimized by considering the change of viscosity with temperature. To further characterize the cyclic transition behavior between the rubbery and the frozen phases, we employ the storage strain ratio to describe the storage and release of deformation during the cyclic SME. The proposed cyclic thermo-mechanical model effectively captures the cyclic SME of TSMPU as demonstrated through comparison with the experimental results at various strain amplitudes and strain rates.

摘要

松弛作为形状记忆聚合物的固有特性, 在其机械变形和形状记忆行为中起着至关重要的作用. 在形状记忆过程中, 松弛行为包含了短期、中期和长期机制, 这些机制共同组成了多级松弛机制. 基于多级松弛机制, 结合热弹性行为和相转变模型, 在有限变形框架下建立了热致形状记忆聚氨酯的循环热-力学本构模型. 在此模型中, 着重考虑黏度随温度的变化, 优化了相转变模型框架中温度对机械变形的影响. 为了进一步描述橡胶相和冻结相之间的循环转变行为, 引入循环的储存应变比, 表征了循环形状记忆过程中变形的储存和释放机制与相转变之间的关系. 与不同应变幅值和应变速率下的循环形状记忆实验结果对比, 验证了所建立的基于多级松弛机制的循环热-力学本构模型能合理地描述形状记忆聚氨酯的循环形状记忆行为.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Shen, F. Chen, X. Zhu, K. T. Yong, and G. Gu, Stimuli-responsive functional materials for soft robotics, J. Mater. Chem. B 8, 8972 (2020).

    Article  Google Scholar 

  2. H. Li, X. Liang, and W. Song, Buckling-controlled two-way shape memory effect in a ring-shaped bilayer, Acta Mech. Sin. 35, 1217 (2019).

    Article  Google Scholar 

  3. H. M. Dou, J. H. Ding, H. Chen, Z. Wang, A. F. Zhang, and H. B. Yu, Bio-based, biodegradable and amorphous polyurethanes with shape memory behavior at body temperature, RSC Adv. 9, 13104 (2019).

    Article  Google Scholar 

  4. A. Lendlein, and O. E. C. Gould, Reprogrammable recovery and actuation behaviour of shape-memory polymers, Nat. Rev. Mater. 4, 116 (2019).

    Article  Google Scholar 

  5. L. Tan, J. Hu, K. Ying Rena, Y. Zhu, and P. Liu, Quick water-responsive shape memory hybrids with cellulose nanofibers, J. Polym. Sci. Part A-Polym. Chem. 55, 767 (2017).

    Article  Google Scholar 

  6. L. Fang, T. Fang, Z. Fang, C. Lu, and Z. Xu, Solar light responsive polymer composites with three shape-memory effects, Macro Mater. Eng. 301, 267 (2016).

    Article  Google Scholar 

  7. B. K. Kim, S. Y. Lee, and M. Xu, Polyurethanes having shape memory effects, Polymer 37, 5781 (1996).

    Article  Google Scholar 

  8. H. Tobushi, H. Hara, E. Yamada, and S. Hayashi, Thermomechanical properties in a thin film of shape memory polymer of polyurethane series, Smart Mater. Struct. 5, 483 (1996).

    Article  Google Scholar 

  9. J. Gu, H. Zeng, Z. Cai, and H. Sun, Modeling the laminated carbon fiber reinforced shape memory polymer composites by using a refined plate theory, Smart Mater. Struct. 29, 095005 (2020).

    Article  Google Scholar 

  10. J. Leng, H. Lu, Y. Liu, W. M. Huang, and S. Du, Shape-memory polymers—a class of novel smart materials, MRS Bull. 34, 848 (2009).

    Article  Google Scholar 

  11. X. Zhang, J. Li, Z. Liang, and Q. Kan, Design and finite element simulation of shape memory polyurethane self-deforming structures, Eng. Fail. Anal. 139, 106446 (2022).

    Article  Google Scholar 

  12. G. Scalet, S. Pandini, M. Messori, M. Toselli, and F. Auricchio, A one-dimensional phenomenological model for the two-way shape-memory effect in semi-crystalline networks, Polymer 158, 130 (2018).

    Article  Google Scholar 

  13. S. Pisani, I. Genta, T. Modena, R. Dorati, M. Benazzo, and B. Conti, Shape-memory polymers hallmarks and their biomedical applications in the form of nanofibers, Int. J. Mol. Sci. 23, 1290 (2022).

    Article  Google Scholar 

  14. F. Puza, and K. Lienkamp, 3D printing of polymer hydrogels—from basic techniques to programmable actuation, Adv. Funct. Mater. 32, 2205345 (2022).

    Article  Google Scholar 

  15. J. Li, Z. Liang, X. Zhang, and Q. Kan, Experimental investigation on the thermo-mechanical deformation of thermo-induced shape memory polyurethane, Polymer 237, 124337 (2021).

    Article  Google Scholar 

  16. M. Staszczak, M. Nabavian Kalat, K. M. Golasiński, L. Urbański, K. Takeda, R. Matsui, and E. A. Pieczyska, Characterization of polyurethane shape memory polymer and determination of shape fixity and shape recovery in subsequent thermomechanical cycles, Polymers 14, 4775 (2022).

    Article  Google Scholar 

  17. X. Wang, H. Lu, X. Shi, K. Yu, and Y. Q. Fu, A thermomechanical model of multi-shape memory effect for amorphous polymer with tunable segment compositions, Compos. Part B-Eng. 160, 298 (2019).

    Article  Google Scholar 

  18. F. Liu, J. Wang, S. Long, H. Zhang, and X. Yao, Experimental and modeling study of the viscoelastic-viscoplastic deformation behavior of amorphous polymers over a wide temperature range, Mech. Mater. 167, 104246 (2022).

    Article  Google Scholar 

  19. Z. Liang, J. Li, X. Zhang, and Q. Kan, A viscoelastic-viscoplastic constitutive model and its finite element implementation of amorphous polymers, Polym. Testing 117, 107831 (2023).

    Article  Google Scholar 

  20. Y. Qin, X. Li, Y. Chen, and M. Lu, Tunable auxetic mechanical metamaterials with “arch-shaped” units, Phys. Rapid Res. Ltrs 13, 1800376 (2019).

    Article  Google Scholar 

  21. D. Chen, H. Wu, J. S. Wei, S. L. Xu, and Q. Fang, Nonlinear visco-hyperelastic tensile constitutive model of spray polyurea within wide strain-rate range, Int. J. Impact Eng. 163, 104184 (2022).

    Article  Google Scholar 

  22. N. Roudbarian, E. Jebellat, S. Famouri, M. Baniasadi, R. Hedayati, and M. Baghani, Shape-memory polymer metamaterials based on triply periodic minimal surfaces, Eur. J. Mech.-A Solids 96, 104676 (2022).

    Article  Google Scholar 

  23. A. Krairi, I. Doghri, J. Schalnat, G. Robert, and W. Van Paepegem, Thermo-mechanical coupling of a viscoelastic-viscoplastic model for thermoplastic polymers: Thermodynamical derivation and experimental assessment, Int. J. Plast. 115, 154 (2019).

    Article  Google Scholar 

  24. Q. Kan, J. Li, G. Kang, and Z. Zhang, Experiments and Models of Thermo-Induced Shape Memory Polymers, in: Shape-Memory Materials (IntechOpen, Rijeka, 2018).

    Google Scholar 

  25. R. Xiao, G. Ghazaryan, T. A. Tervoort, and T. D. Nguyen, Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers, Phys. Rev. E 95, 63001 (2017).

    Article  Google Scholar 

  26. R. Xiao, C. Tian, Y. Xu, and P. Steinmann, Thermomechanical coupling in glassy polymers: An effective temperature theory, Int. J. Plast. 156, 103361 (2022).

    Article  Google Scholar 

  27. Y. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, and J. Diani, Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling, Int. J. Plast. 22, 279 (2006).

    Article  Google Scholar 

  28. H. J. Qi, T. D. Nguyen, F. Castro, C. M. Yakacki, and R. Shandas, Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers, J. Mech. Phys. Solids 56, 1730 (2008).

    Article  Google Scholar 

  29. Y. C. Chen, and D. C. Lagoudas, A constitutive theory for shape memory polymers, Part I: Large deformations, J. Mech. Phys. Solids 56, 1752 (2008).

    Article  MathSciNet  Google Scholar 

  30. Y. C. Chen, and D. C. Lagoudas, A constitutive theory for shape memory polymers, Part II: A linearized model for small deformations, J. Mech. Phys. Solids 56, 1766 (2008).

    Article  MathSciNet  Google Scholar 

  31. J. Gu, H. Sun, and C. Fang, A phenomenological constitutive model for shape memory polyurethanes, J. Intell. Mater. Syst. Struct. 26, 517 (2015).

    Article  Google Scholar 

  32. J. Liu, H. Lu, A. Elmarakbi, and Y. Q. Fu, An extended shoving model for dynamic fluctuation of glass transition in amorphous polymer towards cooperative shape-memory effect, Proc. R. Soc. A 479, 20230067 (2023).

    Article  Google Scholar 

  33. Y. Li, Y. He, and Z. Liu, A viscoelastic constitutive model for shape memory polymers based on multiplicative decompositions of the deformation gradient, Int. J. Plast. 91, 300 (2017).

    Article  Google Scholar 

  34. W. Zhao, L. Liu, J. Leng, and Y. Liu, Thermo-mechanical behavior prediction of shape memory polymer based on the multiplicative decomposition of the deformation gradient, Mech. Mater. 143, 103263 (2020).

    Article  Google Scholar 

  35. J. Kim, S. Y. Jeon, S. Hong, Y. An, H. Park, and W. R. Yu, Three-dimensional constitutive model for shape-memory polymers considering temperature-rate dependent behavior, Smart Mater. Struct. 30, 035030 (2021).

    Article  Google Scholar 

  36. Y. Xue, J. Lei, and Z. Liu, A thermodynamic constitutive model for shape memory polymers based on phase transition, Polymer 243, 124623 (2022).

    Article  Google Scholar 

  37. J. Li, Z. Liang, K. Chen, X. Zhang, G. Kang, and Q. Kan, Thermo-mechanical deformation for thermo-induced shape memory polymers at equilibrium and non-equilibrium temperatures: Experiment and simulation, Polymer 270, 125762 (2023).

    Article  Google Scholar 

  38. H. Lu, and W. M. Huang, On the origin of the Vogel-Fulcher-Tammann law in the thermo-responsive shape memory effect of amorphous polymers, Smart Mater. Struct. 22, 105021 (2013).

    Article  Google Scholar 

  39. J. Wang, L. F. Peng, Y. J. Deng, X. M. Lai, M. W. Fu, and J. Ni, A finite strain thermodynamically-based constitutive modeling and analysis of viscoelastic-viscoplastic deformation behavior of glassy polymers, Int. J. Plast. 122, 135 (2019).

    Article  Google Scholar 

  40. H. Pouriayevali, Y. B. Guo, and V. P. W. Shim, A visco-hyperelastic constitutive description of elastomer behaviour at high strain rates, Procedia Eng. 10, 2274 (2011).

    Article  Google Scholar 

  41. J. Li, Q. Kan, Z. Zhang, G. Kang, and W. Yan, Thermo-mechanically coupled thermo-elasto-visco-plastic modeling of thermo-induced shape memory polyurethane at finite deformation, Acta Mech. Solid Sin. 31, 141 (2018).

    Article  Google Scholar 

  42. T. D. Nguyen, C. M. Yakacki, P. D. Brahmbhatt, and M. L. Chambers, Modeling the relaxation mechanisms of amorphous shape memory polymers, Adv. Mater. 22, 3411 (2010).

    Article  Google Scholar 

  43. M. Baniasadi, P. Fareghi, F. Darijani, and M. Baghani, Finite strain relaxation and creep in coupled axial and torsional deformation, Mech. Based Des. Struct. Mach. 50, 2795 (2022).

    Article  Google Scholar 

  44. Z. Du, Y. Yang, Z. Wang, X. Fan, and T. Lu, A finite strain visco-hyperelastic damage model for rubber-like materials: theory and numerical implementation, Acta Mech. Sin. 39, 222473 (2023).

    Article  MathSciNet  Google Scholar 

  45. J. Lin, L. Dai, J. Qian, and R. Xiao, Modeling the rate-dependent ductile-brittle transition in amorphous polymers, Acta Mech. Sin. 38, 121438 (2022).

    Article  MathSciNet  Google Scholar 

  46. F. Castro, K. K. Westbrook, K. N. Long, R. Shandas, and H. J. Qi, Effects of thermal rates on the thermomechanical behaviors of amorphous shape memory polymers, Mech. Time-Depend Mater. 14, 219 (2010).

    Article  Google Scholar 

  47. C. Zhang, X. Gou, and R. Xiao, Controllable shape-memory recovery regions in polymers through mechanical programming, J. Appl. Polym. Sci 135, 45909 (2018).

    Article  Google Scholar 

  48. H. Tobushi, T. Hashimoto, S. Hayashi, and E. Yamada, Thermomechanical constitutive modeling in shape memory polymer of polyurethane series, J. Intell. Mater. Syst. Struct. 8, 711 (1997).

    Article  Google Scholar 

  49. X. Zheng, B. Zhou, and S. Xue, A viscoelastic-plastic constitutive model of shape memory polymer, J. Mech. 35, 601 (2019).

    Article  Google Scholar 

  50. J. Li, Z. Liang, J. Liu, C. Yu, X. Zhang, and Q. Kan, A thermoviscoelastic constitutive model addressing the cyclic shape memory effect for thermo-induced shape memory polymers, Smart Mater. Struct. 32, 035030 (2023).

    Article  Google Scholar 

  51. M. Baghani, R. Naghdabadi, J. Arghavani, and S. Sohrabpour, A thermodynamically-consistent 3D constitutive model for shape memory polymers, Int. J. Plast. 35, 13 (2012).

    Article  Google Scholar 

  52. C. Yan, and G. Li, Design oriented constitutive modeling of amorphous shape memory polymers and Its application to multiple length scale lattice structures, Smart Mater. Struct. 28, 095030 (2019).

    Article  Google Scholar 

  53. K. Yu, H. Li, A. J. W. McClung, G. P. Tandon, J. W. Baur, and H. J. Qi, Cyclic behaviors of amorphous shape memory polymers, Soft Matter 12, 3234 (2016).

    Article  Google Scholar 

  54. M. Lei, K. Yu, H. Lu, and H. J. Qi, Influence of structural relaxation on thermomechanical and shape memory performances of amorphous polymers, Polymer 109, 216 (2017).

    Article  Google Scholar 

  55. K. K. Westbrook, P. H. Kao, F. Castro, Y. Ding, and H. Jerry Qi, A 3D finite deformation constitutive model for amorphous shape memory polymers: A multi-branch modeling approach for none-quilibrium relaxation processes, Mech. Mater. 43, 853 (2011).

    Article  Google Scholar 

  56. J. Gu, H. Sun, and C. Fang, A multi-branch finite deformation constitutive model for a shape memory polymer based syntactic foam, Smart Mater. Struct. 24, 025011 (2015).

    Article  Google Scholar 

  57. R. Xiao, and C. Tian, A constitutive model for strain hardening behavior of predeformed amorphous polymers: Incorporating dissipative dynamics of molecular orientation, J. Mech. Phys. Solids 125, 472 (2019).

    Article  MathSciNet  Google Scholar 

  58. E. M. Arruda, and M. C. Boyce, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids 41, 389 (1993).

    Article  Google Scholar 

  59. J. Chen, L. Liu, Y. Liu, and J. Leng, Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer, Smart Mater. Struct. 23, 055025 (2014).

    Article  Google Scholar 

  60. J. Bergström, Constitutive modeling of the large strain time-dependent behavior of elastomers, J. Mech. Phys. Solids 46, 931 (1998).

    Article  Google Scholar 

  61. L. Anand, and N. Ames, On modeling the micro-indentation response of an amorphous polymer, Int. J. Plast. 22, 1123 (2006).

    Article  Google Scholar 

  62. M. C. Boyce, D. M. Parks, and A. S. Argon, Large inelastic deformation of glassy polymers, part I: Rate dependent constitutive model, Mech. Mater. 7, 15 (1988).

    Article  Google Scholar 

  63. Z. Liang, J. Li, K. Chen, Y. Dong, C. Yu, and Q. Kan, Multiaxial shape memory effect of thermo-induced shape memory polyurethane under proportional tension-torsion loading, Smart Mater. Struct. 32, 075018 (2023).

    Article  Google Scholar 

  64. S. Mogharebi, R. Kazakeviciute-Makovska, H. Steeb, G. Eggeler, and K. Neuking, On the cyclic material stability of shape memory polymer, Mat.-wiss. U. Werkstofftech. 44, 521 (2013).

    Article  Google Scholar 

  65. J. L. Hu, F. L. Ji, and Y. W. Wong, Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions, Polym. Int. 54, 600 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12102411, 12072296, and 12072295), the Applied Basic Research Project of Sichuan Province (Grant No. 2022NSFSC1957), the Research Funds from China Academy of Engineering Physics (Grant Nos. TCGH0414 and 2022YZL03), and Fundamental Research Funds for Central Universities (Grant No. 2682023CG004).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Zhihong Liang constructed the constitutive model and wrote the first draft of the manuscript; Jian Li and Qianhua Kan contributed to conceptualization, writing–review & editing, supervision, and funding acquisition. Kaijuan Chen and Chao Yu contributed to writing–review & editing.

Corresponding authors

Correspondence to Jian Li  (李建) or Qianhua Kan  (阚前华).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Li, J., Chen, K. et al. Multiple relaxation mechanism-based thermo-mechanical constitutive model describing cyclic shape memory effect of shape memory polyurethane. Acta Mech. Sin. 40, 423347 (2024). https://doi.org/10.1007/s10409-023-23347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23347-x

Keywords

Navigation