Skip to main content
Log in

A molecular dynamics investigation of the deformation mechanism and shape memory effect of epoxy shape memory polymers

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Following deformation, thermally induced shape memory polymers (SMPs) have the ability to recover their original shape with a change in temperature. In this work, the thermomechanical properties and shape memory behaviors of three types of epoxy SMPs with varying curing agent contents were investigated using a molecular dynamics (MD) method. The mechanical properties under uniaxial tension at different temperatures were obtained, and the simulation results compared reasonably with experimental data. In addition, in a thermomechanical cycle, ideal shape memory effects for the three types of SMPs were revealed through the shape frozen and shape recovery responses at low and high temperatures, respectively, indicating that the recovery time is strongly influenced by the ratio of E-51 to 4,4’-Methylenedianiline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Lendlein, and S. Kelch, Angew. Chem. Int. Edit. 41, 1 (2002).

    Article  Google Scholar 

  2. H. Jiang, S. Kelch, and A. Lendlein, Adv. Mater. 18, 1471 (2006).

    Article  Google Scholar 

  3. H. Koerner, G. Price, N. A. Pearce, M. Alexander, and R. A. Vaia, Nat. Mater. 3, 115 (2004).

    Article  ADS  Google Scholar 

  4. A. Lendlein, H. Jiang, O. Jünger, and R. Langer, Nature 434, 879 (2005).

    Article  ADS  Google Scholar 

  5. A. M. Schmidt, Macromol. Rapid Comm. 27, 1168 (2006).

    Article  Google Scholar 

  6. Z. He, N. Satarkar, T. Xie, and Y. T. Cheng, J. Z. Hilt, Adv. Mater. 23, 3192 (2011).

    Article  Google Scholar 

  7. W. M. Huang, B. Yang, L. An, C. Li, and Y. S. Chan, Appl. Phys. Lett. 86, 114105 (2005).

    Article  ADS  Google Scholar 

  8. Y. C. Jung, H. H. So, and J. W. Cho, J. Macromol. Sci. B 45, 453 (2006).

    Article  Google Scholar 

  9. B. K. Kim, S. Y. Lee, and M. Xu, Polymer 37, 5781 (1996).

    Article  Google Scholar 

  10. D. Pérez-Foullerat, S. Hild, A. Mücke, and B. Rieger, Macromol. Chem. Phys. 205, 374 (2004).

    Article  Google Scholar 

  11. A. L. Browne, and N. L. Johnson, Shape Memory Polymer Seat Assemblies, US patent, 7309104 (2007-12-18).

  12. S. Chen, J. Hu, Y. Liu, H. Liem, Y. Zhu, and Q. Meng, Polym. Int. 56, 1128 (2007).

    Article  Google Scholar 

  13. K. Gall, M. L. Dunn, Y. Liu, D. Finch, M. Lake, and N. A. Munshi, Acta Mater. 50, 5115 (2002).

    Article  Google Scholar 

  14. J. W. Cho, J. W. Kim, Y. C. Jung, and N. S. Goo, Macromol. Rapid Comm. 26, 412 (2005).

    Article  Google Scholar 

  15. W. M. Huang, J. Int. Mat. Syst. Str. 17, 753 (2006).

    Article  Google Scholar 

  16. M. A. D. Prima, M. Lesniewski, K. Gall, D. L. McDowell, T. Sanderson, and D. Campbell, Smart Mater. Struct. 16, 2330 (2007).

    Article  ADS  Google Scholar 

  17. Z. F. Li, and Z. D. Wang, J. Int. Mat. Syst. Str. 22, 1605 (2011).

    Article  Google Scholar 

  18. Z. D. Wang, and Z. F. Li, Arch. Appl. Mech. 81, 1667 (2011).

    Article  ADS  MATH  Google Scholar 

  19. I. Rao, and K. Rajagopal, Int. J. Solids Struct. 38, 1149 (2001).

    Article  MATH  Google Scholar 

  20. H. Tobushi, K. Okumura, S. Hayashi, and N. Ito, Mech. Mater. 33, 545 (2001).

    Article  Google Scholar 

  21. Y. Chen, and D. Lagoudas, J. Mech. Phys. Solids 56, 1752 (2008).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Z. Wang, Z. Li, L. Wang, and Z. Xiong, J. Appl. Polym. Sci. 118, 1406 (2010).

    Article  Google Scholar 

  23. H. Lu, Y. Liu, J. Gou, J. Leng, and S. Du, Int. J. Smart Nano Mater. 1, 2 (2010).

    Article  Google Scholar 

  24. Y. Liu, K. Gall, M. L. Dunn, A. R. Greenberg, and J. Diani, Int. J. Plasticity 22, 279 (2006).

    Article  MATH  Google Scholar 

  25. I. Bellin, S. Kelch, R. Langer, and A. Lendlein, Proc. Natl. Am. Sci. 103, 18043 (2006).

    Article  ADS  Google Scholar 

  26. T. Xie, X. Xiao, and Y. T. Cheng, Macromol. Rapid Commun. 30, 1823 (2009).

    Article  Google Scholar 

  27. T. Pretsch, Smart Mater. Struct. 19, 427 (2010).

    Article  Google Scholar 

  28. Z. Wang, W. Song, L. Ke, and Y. Wang, Mater. Lett. 89, 216 (2012).

    Article  Google Scholar 

  29. S. S. Jang, W. A. Goddard, and M. Y. S. Kalani, J. Phys. Chem. B 111, 1729 (2007).

    Article  Google Scholar 

  30. C. Li, and A. Strachan, Polymer 52, 2920 (2011).

    Article  Google Scholar 

  31. J. Diani, and K. Gall, Smart Mater Struct. 16, 1575 (2007).

    Article  ADS  Google Scholar 

  32. E. Ghobadi, M. Heuchel, K. Kratz, and A. Lendlein, Macromol. Chem. Phys. 214, 1273 (2013).

    Article  Google Scholar 

  33. M. Tupper, N. Munshi, F. Beavers, K. Gall, M. Mikuls, and T. Meink, IEEE Proc. 5, 2541 (2001).

    Google Scholar 

  34. D. Campbell, M. S. Lake, M. R. Scherbarth, E. Nelson, and R. W. Six, in 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, USA, 2005, AIAA 2005-2362.

    Google Scholar 

  35. C. S. Hazelton, K. R. Gall, E. R. Abrahamson, R. J. Denis, and M. S. Lake, in 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Norfolk, USA, 2003, AIAA 2003-1977.

    Google Scholar 

  36. W. Francis, M. S. Lake, K. Mallick, and G. E. Freebury, A. Maji, in 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Norfolk, USA, 2003, AIAA 2003-1496.

    Google Scholar 

  37. W. B. Song, L. L. Wang, and Z. D. Wang, Mater. Sci. Eng. A-Struct. 529, 29 (2011).

    Article  Google Scholar 

  38. Accelrys Materials Studio, Version 5.0 (Accelrys Software Inc., San Diego (CA), 2009).

  39. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  40. H. Sun, Macromolecules 28, 701 (1995).

    Article  ADS  Google Scholar 

  41. H. B. Fan, and M. M. F. Yuen, Polymer 48, 2174 (2007).

    Article  Google Scholar 

  42. P. Wu, and E. Van der Giessen, J. Mech. Phys. Solids. 41, 427 (1993).

    Article  ADS  MATH  Google Scholar 

  43. P. Wu, and E. Van der Giessen, Mech. Res. Commun. 19, 427 (1992).

    Article  Google Scholar 

  44. C. M. Yakacki, R. Shandas, C. Lanning, B. Rech, A. Eckstein, and K. Gall, Biomaterials 28, 2255 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to YaFang Guo or XingHua Shi.

Additional information

Recommended by YouShi Hong (Associate Editor-in-Chief)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, Z., Guo, Y. et al. A molecular dynamics investigation of the deformation mechanism and shape memory effect of epoxy shape memory polymers. Sci. China Phys. Mech. Astron. 59, 634601 (2016). https://doi.org/10.1007/s11433-015-5758-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-015-5758-4

Keywords

Navigation