Skip to main content
Log in

Electrohydrodynamic conduction pumping of viscoelastic dielectric liquids on the microscale

微尺度下粘弹性介电液体的电水动力学传导泵

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Electrohydrodynamic (EHD) conduction pumping can be applied in many macroscopic devices accompanied by a high electric field intensity (106 V/m). Microscale flow generation has become increasingly important with the widespread development of thermal management devices, which are currently used to cool high heat flux sources with small surface areas and are found in a variety of electronic, controlled heat transfer, and aerospace scenarios. Additionally, the magnitude of the applied voltage can be significantly reduced in micropumping, resulting in power savings and a reliable method for flow generation. In this study, we examine the dynamic characteristics of a conduction micropump embedded within a rectangular microchannel, showing the effects of Coulombic driving forces, different channel heights, polymer elasticity, and viscosity ratios. The results show that electric power consumption can vary by two orders of magnitude for increasing channel height. As the polymer concentration increases, the maximum velocity decreases significantly and can reach 50% of that of the unadded polymer with a plunger-like distribution. The flow rate depends linearly on the polymer concentration, but exhibits non-monotonic curve with the polymer elasticity. It means that the flow rate performance of the micro-pump can be kept controllable by tuning the viscosity ratio, providing some suggestions for some regulated flow applications.

摘要

电流体动力学传导泵送技术可应用于许多高电场强度状态(106 V/m)下工作的宏观设备. 随着热管理设备的广泛开发, 微尺度流动生成变得越来越重要. 这些设备目前用于冷却小表面面积的高热量流源, 并可以在各种电子、控制热传递和航空航天场景中找到.此外, 微泵中施加电压的幅度可以显著降低, 从而节省能源并实现可靠的流动生成. 在本研究中, 我们探究了嵌入矩形微通道中传导微泵的动态特性, 研究了库仑驱动力、不同通道高度、聚合物弹性和粘度比的影响. 结果显示, 随着通道高度的增加, 电力消耗可以变化两个数量级. 随着聚合物浓度的增加, 最大速度显著减小, 并可以达到与未添加聚合物相比的50%, 呈柱塞状分布. 流量取决于聚合物浓度, 但在聚合物弹性下呈现出非线性曲线. 这意味着通过调节粘度比来保持微泵的流量性能可控制, 可以为某些受控流量应用提供一些建议.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K. He, Z. Chai, L. Wang, B. Ma, and B. Shi, Numerical investigation of electro-thermo-convection with a solid-liquid interface via the lattice Boltzmann method, Phys. Fluids 33, 037128 (2021).

    Article  Google Scholar 

  2. Y. Guan, and I. Novosselov, Numerical analysis of electroconvection in cross-flow with unipolar charge injection, Phys. Rev. Fluids 4, 103701 (2019).

    Article  Google Scholar 

  3. Y. Guan, X. He, Q. Wang, Z. Song, M. Zhang, and J. Wu, Monotonic instability and overstability in two-dimensional electrothermohydrodynamic flow, Phys. Rev. Fluids 6, 013702 (2021).

    Article  Google Scholar 

  4. X. Xu, H. Zhang, Y. Yan, J. Wang, and L. Guo, Effects of electrical stimulation on skin surface, Acta Mech. Sin. 37, 1843 (2021).

    Article  Google Scholar 

  5. J. Z. Wu, B. F. Wang, and Q. Zhou, Massive heat transfer enhancement of Rayleigh-Bénard turbulence over rough surfaces and under horizontal vibration, Acta Mech. Sin. 38, 321319 (2022).

    Article  Google Scholar 

  6. A. Castellanos, Electrohydrodynamics (Springer Science & Business Media, Wien, 1998).

    Book  Google Scholar 

  7. V. Cacucciolo, H. Shigemune, M. Cianchetti, C. Laschi, and S. Maeda, Conduction electrohydrodynamics with mobile electrodes: A novel actuation system for untethered robots, Adv. Sci. 4, 1600495 (2017).

    Article  Google Scholar 

  8. Q. Yang, F. Xu, Y. Yang, J. Wang, A. Wang, and C. Ma, Numerical study on the dynamic characteristics of water entry of cavity body using two-phase SPH method, Acta Mech. Sin. 37, 1072 (2021).

    Article  MathSciNet  Google Scholar 

  9. D. V. Fernandes, and Y. K. Suh, Numerical simulation and design optimization of an electrohydrodynamic pump for dielectric liquids, Int. J. Heat Fluid Flow 57, 1 (2016).

    Article  Google Scholar 

  10. M. Talmor, and J. Seyed-Yagoobi, Numerical study of micro-scale EHD conduction pumping: The effect of pump orientation and flow inertia on heterocharge layer morphology and flow distribution control, J. Electrostatics 111, 103548 (2021).

    Article  Google Scholar 

  11. J. S. Yagoobi, in Transport of heat and mass with electrical field—From Earth to space: Proceedings of the 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, 2019. p. 1.

  12. R. Gannoun, W. Hassen, A. Pérez, and M. Borjini, Numerical study of electro-convection and electro-thermo-convection in solar chimney geometry, Eur. J. Electr. Eng. 21, 171 (2019).

    Article  Google Scholar 

  13. P. Traoré, J. Wu, C. Louste, F. Duran Olivencia, P. A. Vázquez, and A. T. Pérez, Numerical investigation of electroconvection induced by strong unipolar injection between two rotating coaxial cylinders, J. Electrostatics 94, 60 (2018).

    Article  Google Scholar 

  14. Q. Nie, F. Li, Q. Ma, H. Fang, and Z. Yin, Effects of charge relaxation on the electrohydrodynamic breakup of leaky-dielectric jets, J. Fluid Mech. 925, A4 (2021).

    Article  MathSciNet  Google Scholar 

  15. V. K. Patel, F. Robinson, J. Seyed-Yagoobi, and J. Didion, Terrestrial and microgravity experimental study of microscale heat-transport device driven by electrohydrodynamic conduction pumping, IEEE Trans. Ind. Applicat. 49, 2397 (2013).

    Article  Google Scholar 

  16. Y. Feng, and J. Seyed-Yagoobi, Electrical charge transport and energy conversion with fluid flow during electrohydrodynamic conduction pumping, Phys. Fluids 19, 057102 (2007).

    Article  Google Scholar 

  17. P. Traoré, and A. T. Pérez, Two-dimensional numerical analysis of electroconvection in a dielectric liquid subjected to strong unipolar injection, Phys. Fluids 24, 037102 (2012).

    Article  Google Scholar 

  18. P. Atten, and J. Seyed-Yagoobi, Electrohydrodynamically induced dielectric liquid flow through pure conductionin point/plane geometry, IEEE Trans. Dielect. Electr. Insul. 10, 27 (2003).

    Article  Google Scholar 

  19. J. C. Ryu, H. J. Park, J. K. Park, and K. H. Kang, New electrohydrodynamic flow caused by the onsager effect, Phys. Rev. Lett. 104, 104502 (2010).

    Article  Google Scholar 

  20. D. V. Fernandes, D. S. Cho, and Y. K. Suh, Electrohydrodynamic flow of dielectric liquid around a wire electrode-effect of truncation of onsager function, IEEE Trans. Dielect. Electr. Insul. 21, 194 (2014).

    Article  Google Scholar 

  21. W. Kim, J. Chun Ryu, Y. Kweon Suh, and K. Hyoung Kang, Pumping of dielectric liquids using non-uniform-field induced electrohydrodynamic flow, Appl. Phys. Lett. 99, 224102 (2011).

    Article  Google Scholar 

  22. Y. K. Suh, and K. H. Baek, Competition between the bulk and the dissociation layer in electrohydrodynamic flow of dielectric liquid around coplanar electrodes, Phys. Rev. E 87, 023009 (2013).

    Article  Google Scholar 

  23. P. A. Vázquez, J. Seyed-Yagoobi, P. Traoré, and C. Louste, in EHD pumping in flexible conic nozzle: Proceedings of the 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, 2019. pp. 1–4.

  24. M. Yazdani, and J. Seyed-Yagoobi, Numerical investigation of electrohydrodynamic-conduction pumping of liquid film in the presence of evaporation, J. Heat Transfer 131, 011602 (2009).

    Article  Google Scholar 

  25. L. Wang, Z. Wei, T. Li, Z. Chai, and B. Shi, A lattice Boltzmann modelling of electrohydrodynamic conduction phenomenon in dielectric liquids, Appl. Math. Model. 95, 361 (2021).

    Article  MathSciNet  Google Scholar 

  26. Y. Feng, and J. Seyed-Yagoobi, Understanding of electrohydrodynamic conduction pumping phenomenon, Phys. Fluids 16, 2432 (2004).

    Article  Google Scholar 

  27. P. A. Vázquez, M. Talmor, J. Seyed-Yagoobi, P. Traoré, and M. Yazdani, In-depth description of electrohydrodynamic conduction pumping of dielectric liquids: Physical model and regime analysis, Phys. Fluids 31, 113601 (2019).

    Article  Google Scholar 

  28. G. Zhang, Y. Qu, Z. Guo, and F. Jin, Magnetically induced electric potential in first-order composite beams incorporating couple stress and its flexoelectric effects, Acta Mech. Sin. 37, 1509 (2021).

    Article  MathSciNet  Google Scholar 

  29. N. Nourdanesh, S. Hossainpour, and K. Adamiak, Numerical simulation and optimization of natural convection heat transfer enhancement in solar collectors using electrohydrodynamic conduction pump, Appl. Therm. Eng. 180, 115825 (2020).

    Article  Google Scholar 

  30. H. Asadi Dereshgi, H. Dal, and M. Z. Yildiz, Piezoelectric micropumps: State of the art review, Microsyst. Technol. 27, 4127 (2021).

    Article  Google Scholar 

  31. D. A. Lanbaran, and R. Taqizadeh, Application of EHD combination and triangular blades to enhance the cooling rate of hot barriers, J. Electrostatics 111, 103555 (2021).

    Article  Google Scholar 

  32. H. Wu, C. Li, and J. Li. Heat transfer enhancement by pulsating flow of a viscoelastic fluid in a microchannel with a rib plate. Nanoscale Microscale Therm. Eng. 26, 112 (2022).

    Article  Google Scholar 

  33. J. M. Crowley, G. S. Wright, and J. C. Chato, Selecting a working fluid to increase the efficiency and flow rate of an EHD pump, IEEE Trans. Ind. Applicat. 26, 42 (1990).

    Article  Google Scholar 

  34. M. Ashjaee, and S. R. Mahmoudi, in Experimental study of electrohydrodynamic pumping through conduction phenomenon using various fluids: Proceedings of the CEIDP’05. 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Nashville, 2005.

  35. M. R. Pearson, and J. Seyed-Yagoobi, Experimental study of EHD conduction pumping at the meso- and micro-scale, J. Electrostatics 69, 479 (2011).

    Article  Google Scholar 

  36. V. Cacucciolo, J. Shintake, Y. Kuwajima, S. Maeda, D. Floreano, and H. Shea, Stretchable pumps for soft machines, Nature 572, 516 (2019).

    Article  Google Scholar 

  37. J. H. Aklonis, W. J. MacKnight, M. Shen, and W. P. Mason, Introduction to polymer viscoelasticity, Phys. Today 26, 59 (1973).

    Article  Google Scholar 

  38. S. S. Datta, A. M. Ardekani, P. E. Arratia, A. N. Beris, I. Bischofberger, G. H. McKinley, J. G. Eggers, J. E. López-Aguilar, S. M. Fielding, A. Frishman, M. D. Graham, J. S. Guasto, S. J. Haward, A. Q. Shen, S. Hormozi, A. Morozov, R. J. Poole, V. Shankar, E. S. G. Shaqfeh, H. Stark, V. Steinberg, G. Subramanian, and H. A. Stone, Perspectives on viscoelastic flow instabilities and elastic turbulence, Phys. Rev. Fluids 7, 080701 (2022).

    Article  Google Scholar 

  39. G. Chen, W. Xian, Q. Wang, and Y. Li, Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers, Acta Mech. Sin. 37, 725 (2021).

    Article  MathSciNet  Google Scholar 

  40. Z. Lv, L. Zhang, H. Wu, Y. Wang, and J. Li, Induced charge electroosmosis characteristics of viscoelastic fluid around a metal cylinder, Colloids Surf. A-Physicochem. Eng. Aspects 623, 126727 (2021).

    Article  Google Scholar 

  41. Y. Zhao, X. Hou, S. Zhang, T. Sun, L. Du, and Z. Deng, Nonlinear forced vibration of thermo-electro-elastic piezoelectric-graphene composite nanoplate based on viscoelastic foundation, Acta Mech. Sin. 39, 522228 (2023).

    Article  MathSciNet  Google Scholar 

  42. C. Yuan, H. Zhang, X. Li, M. Oishi, M. Oshima, Q. Yao, and F. Li, Numerical investigation of T-shaped microfluidic oscillator with viscoelastic fluid, Micromachines 12, 477 (2021).

    Article  Google Scholar 

  43. Z. Ding, and Y. Jian, Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: A linear analysis, J. Fluid Mech. 919, A20 (2021).

    Article  MathSciNet  Google Scholar 

  44. W. H. Cai, Y. Y. Li, H. N. Zhang, Y. K. Li, J. P. Cheng, X. B. Li, and F. C. Li, An efficient micro-mixer by elastic instabilities of viscoelastic fluids: Mixing performance and mechanistic analysis, Int. J. Heat Fluid Flow 74, 130 (2018).

    Article  Google Scholar 

  45. G. Li, L. A. Archer, and D. L. Koch, Electroconvection in a viscoelastic electrolyte, Phys. Rev. Lett. 122, 124501 (2019).

    Article  Google Scholar 

  46. J. P. Cheng, H. N. Zhang, W. H. Cai, S. N. Li, and F. C. Li, Effect of polymer additives on heat transport and large-scale circulation in turbulent Rayleigh-Bénard convection, Phys. Rev. E 96, 013111 (2017).

    Article  Google Scholar 

  47. W. Zhang, H. N. Zhang, J. Li, B. Yu, and F. Li, Comparison of turbulent drag reduction mechanisms of viscoelastic fluids based on the Fukagata-Iwamoto-Kasagi identity and the Renard-Deck identity, Phys. Fluids 32, 013104 (2020).

    Article  Google Scholar 

  48. M. Yu, K. H. Ahn, and S. J. Lee, Design optimization of ink in electrohydrodynamic jet printing: Effect of viscoelasticity on the formation of Taylor cone jet, Mater. Des. 89, 109 (2016).

    Article  Google Scholar 

  49. F. Pimenta, and M. A. Alves, Electro-elastic instabilities in cross-shaped microchannels, J. Non-Newtonian Fluid Mech. 259, 61 (2018).

    Article  Google Scholar 

  50. F. Li, S. Y. Ke, X. Y. Yin, and X. Z. Yin, Effect of finite conductivity on the nonlinear behaviour of an electrically charged viscoelastic liquid jet, J. Fluid Mech. 874, 5 (2019).

    Article  MathSciNet  Google Scholar 

  51. Z. G. Su, T. F. Li, K. Luo, and H. L. Yi, Nonlinear behavior of electrohydrodynamic flow in viscoelastic fluids, Phys. Rev. Fluids 6, 093701 (2021).

    Article  Google Scholar 

  52. D. L. Chen, K. Luo, J. Wu, and H. L. Yi, Electrohydrodynamic conduction pumping of a viscoelastic dielectric fluid with the Onsager-Wien effect, Phys. Fluids 33, 113101 (2021).

    Article  Google Scholar 

  53. R. B. Bird, P. J. Dotson, and N. L. Johnson, Polymer solution rheology based on a finitely extensible bead—Spring chain model, J. Non-Newtonian Fluid Mech. 7, 213 (1980).

    Article  Google Scholar 

  54. Z. Y. Zhang, D. L. Chen, H. K. Jiang, Z. G. Su, K. Luo, and H. L. Yi, The electrohydrodynamic plumes evolution in viscoelastic fluids with energy transfer process, Phys. Fluids 34, 103617 (2022).

    Article  Google Scholar 

  55. P. Traoré, C. Louste, U. Seth, P. A. Vazquez, and J. Yagoobi, in Numerical investigation of EHD pumping through conduction phenomenon in a rectangular channel, Proceedings of the 2019 IEEE 20th International Conference on Dielectric Liquids (ICDL), Roma, 2019. pp. 1–4.

  56. L. Hou, B. Zhu, and Y. Wang, kεNet: Discovering the turbulence model and applying for low Reynolds number turbulent channel flow, Acta Mech. Sin. 39, 322326 (2023).

    Article  MathSciNet  Google Scholar 

  57. F. Pimenta, and M. A. Alves, Stabilization of an open-source finite-volume solver for viscoelastic fluid flows, J. Non-Newtonian Fluid Mech. 239, 85 (2017).

    Article  MathSciNet  Google Scholar 

  58. M. A. Alves, P. J. Oliveira, and F. T. Pinho, A convergent and universally bounded interpolation scheme for the treatment of advection, Numer. Methods Fluids 41, 47 (2003).

    Article  Google Scholar 

  59. D. L. Chen, X. P. Luo, Z. G. Su, K. Luo, and H. L. Yi, Thermal gradient and elastic dependence of induced charge electro-osmosis in viscoelastic fluids, Phys. Fluids 35, 012008 (2023).

    Article  Google Scholar 

  60. M. Yazdani, and J. Seyed-Yagoobi, Effect of charge mobility on dielectric liquid flow driven by EHD conduction phenomenon, J. Electrostatics 72, 285 (2014).

    Article  Google Scholar 

  61. S. Chen, J. Xue, J. Hu, Q. Ding, L. Zhou, S. Feng, Y. Cui, S. Lü, and M. Long, Flow field analyses of a porous membrane-separated, double-layered microfluidic chip for cell co-culture, Acta Mech. Sin. 36, 754 (2020).

    Article  Google Scholar 

  62. Z. Du, P. A. Vázquez, and J. Wu, Numerical investigation of electrohydrodynamic conduction with a temperature gradient, Acta Mech. Sin. 39, 222479 (2023).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 52076055), and the Fundamental Research Funds for the Central Universities (Grant No. FRFCU5710094020).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Di-Lin Chen Conceptualization, Methodology, Investigation, Writing–original draft & review & editing. Chu-Tong Zhou Visualization, Investigation. Yu Zhang Review, Methodology. Kang Luo Supervision. Hong-Liang Yi Supervision.

Corresponding author

Correspondence to Hong-Liang Yi  (易红亮).

Ethics declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, DL., Zhou, CT., Zhang, Y. et al. Electrohydrodynamic conduction pumping of viscoelastic dielectric liquids on the microscale. Acta Mech. Sin. 40, 223115 (2024). https://doi.org/10.1007/s10409-023-23115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-23115-x

Navigation