Skip to main content
Log in

Nonlinear forced vibration of thermo-electro-elastic piezoelectric-graphene composite nanoplate based on viscoelastic foundation

热-电-弹压电/石墨烯复合纳米板在粘弹性地基上的非线性受迫振动

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The dynamic behavior of a piezoelectric-graphene compound asymmetric nanoplate resting on a viscoelastic foundation is investigated in this paper, considering both exposure to thermal environment and transverse harmonic excitation. First, according to the Hamilton principle and nonlocal elastic theory, a dynamic model of the composite nanoplate is established by a group of nonlinear partial differential equations. Through the Galerkin method, the simply supported partial differential equations form of the composite nanoplate system is simplified to the form of an asymmetric Duffing-Helmholtz oscillator. Then, the dynamic mechanism of the composite nanoplate system containing a quadratic nonlinear term is revealed, and the influences of nonlocal parameter, temperature, viscoelastic foundation, thickness, aspect ratio and external voltage on the nonlinear vibration of the system are numerically analyzed comprehensively. Moreover, the effect of wave number on nonlinear vibration compared with the first-order wavenumber is emphasized. It is anticipated that the dynamic results of the present work would provide the theoretical basis for the experimental characterization of the mechanical properties of piezoelectric-graphene composite nanoresonators.

摘要

本文研究了非对称压电/石墨烯复合纳米板在粘弹性地基上、热环境及外部简谐激励作用下的动力学行为. 根据Hamilton原理和Kirchhoff板理论, 建立复合纳米板的动力学方程, 并通过Galerkin方法对简支边界下的动力学方程进行求解, 获得了一个包含有二次非线性项的Duffing-Helmholtz方程. 从解析和数值方面分别分析了非局部弹性参数、温度、粘弹性基体、电压以及纳米板的几何尺寸对系统非线性与线性频率比和非线性振动行为的影响. 此外, 本文揭示了系统的非对称性和二次非线性项之间的对应关系. 本研究的动力学结果将为压电-石墨烯复合纳米谐振器力学性能的实验表征提供理论依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324, 1312 (2009).

    Article  Google Scholar 

  2. H. Askari, E. Esmailzadeh, and D. Zhang, Nonlinear vibration analysis of nonlocal nanowires, Compos. Part B-Eng. 67, 607 (2014).

    Article  Google Scholar 

  3. S. C. Shiu, and J. L. Tsai, Characterizing thermal and mechanical properties of graphene/epoxy nanocomposites, Compos. Part B-Eng. 56, 691 (2014).

    Article  Google Scholar 

  4. C. L. Kane, and E. J. Mele, Size, shape, and low energy electronic structure of carbon nanotubes, Phys. Rev. Lett. 78, 1932 (1997).

    Article  Google Scholar 

  5. A. Maiti, A. Svizhenko, and M. P. Anantram, Electronic transport through carbon nanotubes: Effects of structural deformation and tube chirality, Phys. Rev. Lett. 88, 126805 (2002).

    Article  Google Scholar 

  6. M. T. Todaro, F. Guido, V. Mastronardi, D. Desmaele, G. Epifani, L. Algieri, and M. De Vittorio, Piezoelectric MEMS vibrational energy harvesters: Advances and outlook, Microelectron. Eng. 183–184, 23 (2017).

    Article  Google Scholar 

  7. Z. Wang, and T. Li, A semi-analytical model for energy harvesting of flexural wave propagation on thin plates by piezoelectric composite beam resonators, Mech. Syst. Signal Process. 147, 107137 (2021).

    Article  Google Scholar 

  8. B. Arash, and Q. Wang, Detection of gas atoms with carbon nanotubes, Sci. Rep. 3, 1782 (2013).

    Article  Google Scholar 

  9. L. Liu, L. Zhang, G. Pan, and S. Zhang, Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller, Ocean Eng. 257, 111493 (2022).

    Article  Google Scholar 

  10. M. Ghadiri, S. Hamed, and S. Hosseini, Nonlinear dual frequency excited vibration of viscoelastic graphene sheets exposed to thermomagnetic field, Commun. Nonlinear Sci. Numer. Simul. 83, 105111 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Ansari, and J. Torabi, Nonlocal vibration analysis of circular double-layered graphene sheets resting on an elastic foundation subjected to thermal loading, Acta Mech. Sin. 32, 841 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  12. K. K. Żur, A. Farajpour, C. W. Lim, and P. Jankowski, On the nonlinear dynamics of porous composite nanobeams connected with fullerenes, Composite Struct. 274, 114356 (2021).

    Article  Google Scholar 

  13. F. Ebrahimi, and S. H. S Hosseini, Double harmonically excited nonlinear vibration of viscoelastic piezoelectric nanoplates subjected to thermo-electro-mechanical forces, J. Vib. Control 26, 430 (2020).

    Article  MathSciNet  Google Scholar 

  14. M. Malikan, Electro-thermal buckling of elastically supported double-layered piezoelectric nanoplates affected by an external electric voltage, Multidiscipline Model. Mater. Struct. 15, 50 (2019).

    Article  Google Scholar 

  15. A. A. Nuhu, and B. Safaei, A comprehensive review on the vibration analyses of small-scaled plate-based structures by utilizing the nonclassical continuum elasticity theories, Thin-Walled Struct. 179, 109622 (2022).

    Article  Google Scholar 

  16. L. Du, Y. Zhao, Y. Lei, J. Hu, and X. Yue, Suppression of chaos in a generalized Duffing oscillator with fractional-order deflection, Nonlinear Dyn. 92, 1921 (2018).

    Article  MATH  Google Scholar 

  17. A. C. Eringen, Nonlocal polar elastic continua, Int. J. Eng. Sci. 10, 1 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Ebrahimi, and S. H. S. Hosseini, Nonlinear dynamics and stability of viscoelastic nanoplates considering residual surface stress and surface elasticity effects: A parametric excitation analysis, Eng. Comput. 37, 1709 (2021).

    Article  Google Scholar 

  19. T. Q. Quan, N. Van Quyen, and N. D. Duc, An analytical approach for nonlinear thermo-electro-elastic forced vibration of piezoelectric penta—Graphene plates, Eur. J. Mech.-A Solids 85, 104095 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  20. N. Kammoun, H. Jrad, S. Bouaziz, M. B. Amar, M. Soula, and M. Haddar, Thermo-electro-mechanical vibration characteristics of graphene/piezoelectric/graphene sandwich nanobeams, J. Mech. 35, 65 (2019).

    Article  Google Scholar 

  21. H. Li, X. Wang, and J. Chen, Nonlinear electro-mechanical coupling vibration of corrugated graphene/piezoelectric laminated structures, Int. J. Mech. Sci. 150, 705 (2019).

    Article  Google Scholar 

  22. X. Y. Guo, P. Jiang, D. X. Cao, and C. M. Wang, Nonlinear vibrations of graphene piezoelectric microsheet under coupled excitations, Int. J. Non-Linear Mech. 124, 103498 (2020).

    Article  Google Scholar 

  23. H. B. Li, and X. Wang, Nonlinear dynamic characteristics of graphene/piezoelectric laminated films in sensing moving loads, Sens. Actuat. A-Phys. 238, 80 (2016).

    Article  Google Scholar 

  24. H. Zhong, J. Xia, F. Wang, H. Chen, H. Wu, and S. Lin, Graphene-piezoelectric material heterostructure for harvesting energy from water flow, Adv. Funct. Mater. 27, 1604226 (2017).

    Article  Google Scholar 

  25. A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54, 4703 (1983).

    Article  Google Scholar 

  26. Z. G. Zhou, and B. Wang, The scattering of harmonic elastic antiplane shear waves by a Griffith crack in a piezoelectric material plane by using the non-local theory, Int. J. Eng. Sci. 40, 303 (2002).

    Article  Google Scholar 

  27. L. L. Ke, Y. S. Wang, J. Yang, and S. Kitipornchai, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory, Acta Mech. Sin. 30, 516 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Liu, L. L. Ke, Y. S. Wang, and J. Yang, Nonlinear vibration of nonlocal piezoelectric nanoplates, Int. J. Str. Stab. Dyn. 15, 1540013 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  29. I. S. Raju, G. V. Rao, and K. K. Raju, Effect of longitudinal or inplane deformation and inertia on the large amplitude flexural vibrations of slender beams and thin plates, J. Sound Vib. 49, 415 (1976).

    Article  MATH  Google Scholar 

  30. R. Ansari, S. Sahmani, and B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets, Phys. Lett. A 375, 53 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11872303, 12072262, 11972287, and 12172283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zichen Deng  (邓子辰).

Additional information

Author contributions

Yunping Zhao and Xiuhui Hou designed the research. Yunping Zhao wrote the first draft of the manuscript and numerical modeling. Tongtong Sun helped examine the manuscript. Xiuhui Hou and Yunping Zhao discussed and revised the final version. Xiuhui Hou, Shuo Zhang, Lin Du and Zichen Deng supported the paper by the foundation. Zichen Deng gave the financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Hou, X., Zhang, S. et al. Nonlinear forced vibration of thermo-electro-elastic piezoelectric-graphene composite nanoplate based on viscoelastic foundation. Acta Mech. Sin. 39, 522228 (2023). https://doi.org/10.1007/s10409-022-22228-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-22228-x

Navigation