Skip to main content
Log in

Numerical study on the dynamic characteristics of water entry of cavity body using two-phase SPH method

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The air usually has a major influence on the water entry of a typical cavity body (cavity body is a hollow, cylindrical, semi-closed structure), which not only lowers the slamming load but also affects the dynamic characteristics of water entry. In this paper, a two-phase smoothed particle hydrodynamics (SPH) model for simulating the water entry of cavity body is presented. The SPH model combined with Riemann solver is improved to deal with the two-phase flows with the discontinuous quantities across the interface. One-sided Riemann problem is used to impose the fluid–structure interaction and a switch-function-based Riemann solver dissipation is formulated to improve the interfacial instability owing to the strong impact. The motion equations of rigid body are incorporated into two-phase SPH model to describe the motion of cavity body. The proposed model is validated by research on the test cases in the published literature. Finally, this work presents a study of water entry of cavity body by experiment and this two-phase SPH method. The dynamics phenomena in the coupling process between cavity body and two-phase flow are investigated. And the effects of air, mass, the sizes and incline angles of cavity body on the dynamic characteristics of cavity body and two-phase flows are shown.

Graphic abstract

An improved two-phase SPH model was used to simulate the water entry of cavity body. The cavity body impacts the water surface and the cavity body is closed by the flooding water. It comes into being open air cavity and water jets. The jet walls protrude and the air cavity is closed. With the increase of the water entry depth, the complex hydrodynamic phenomena can be seen again. The sinking depth shows the law of fluctuation up and down with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Yan, H., Liu, Y., Kominiarczuk, J., et al.: Cavity dynamics in water entry at low froude numbers. J. Fluid Mech. 641, 441–461 (2009)

    Article  Google Scholar 

  2. Holland, K.T., Green, A.W., Abelev, A., et al.: Parameterization of the in-water motions of falling cylinders using high-speed video. Exp. Fluids. 37, 690–700 (2004)

    Article  Google Scholar 

  3. Wang, L., Xu, F., Yang, Y.: SPH scheme for simulating the water entry of an elastomer. Ocean Eng. 178, 233–245 (2019)

    Article  Google Scholar 

  4. Liu, H., Zhou, B., Han, X., et al.: Numerical simulation of water entry of an inclined cylinder. Ocean Eng. 215, 107908 (2020)

    Article  Google Scholar 

  5. Kim, N., Park, H.: Water entry of rounded cylindrical bodies with different aspect ratios and surface conditions. J. Fluid Mech. 863, 757–788 (2019)

    Article  MathSciNet  Google Scholar 

  6. Lin, L.M., Zhong, X.F., Wu, Y.X.: Effect of perforation on flow past a conic cylinder at Re=100: wavy vortex and sign laws. Acta Mech. Sin. 34, 812–829 (2018)

    Article  MathSciNet  Google Scholar 

  7. Divsalar, K.: Improving the hydrodynamic performance of the SUBOFF bare hull model: a CFD approach. Acta Mech. Sin. 36, 44–56 (2020)

    Article  Google Scholar 

  8. Nguyen, V.T., Vu, D.T., Park, W.G., et al.: Navier-Stokes solver for waterentry bodies with moving Chimera grid method in 6DOF motions. Comput. Fluids. 140, 19–38 (2016)

    Article  MathSciNet  Google Scholar 

  9. Iranmanesh, A., Passandideh-Fard, M.: A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique. Ocean Eng. 130, 557–566 (2017)

    Article  Google Scholar 

  10. Zhang, X., Lin, P.Q., Qu, Q.L., et al.: Effects of Froude number and geometry on water entry of a 2-D ellipse. J. Hydrodyn. 30, 738–749 (2018)

    Article  Google Scholar 

  11. Kleefsman, K.M.T., Fekken, G., Veldman, A.E.P., et al.: A Volume-of-Fluid based simulation method for wave impact problems. J. Comput. Phys. 206, 363–393 (2005)

    Article  MathSciNet  Google Scholar 

  12. Lin, P.Z.: A fixed-grid model for simulation of a moving body in free surface flows. Comput. Fluid. 36, 549–561 (2007)

    Article  Google Scholar 

  13. Wick, T.: Fluid-structure interactions using different mesh motion techniques. Comput. Struct. 89, 1456–1467 (2011)

    Article  Google Scholar 

  14. Li, Y., Niu, X.D., Yuan, H.Z., et al.: A numerical study for WENO scheme-based on different lattice Boltzmann flux solver for compressible flows. Acta Mech. Sin. 34, 995–1014 (2018)

    Article  MathSciNet  Google Scholar 

  15. Monaghan, J.J.: Particle Methods for Hydrodynamics. Comput. Phys. Rep. 3, 71–124 (1985)

    Article  Google Scholar 

  16. Liu, W.T., Sun, P.N., Ming, F.R., et al.: Application of particle splitting method for both hydrostatic and hydrodynamic cases in SPH. Acta Mech. Sin. 34, 601–613 (2017)

    Article  MathSciNet  Google Scholar 

  17. Dong, X.W., Liu, J.L., Liu, S., et al.: Quasi-static simulation of droplet morphologies using a smoothed particle hydrodynamics multiphase model. Acta Mech. Sin. 35, 32–44 (2019)

    Article  MathSciNet  Google Scholar 

  18. Liu, M.B., Zhang, Z.L.: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci. China Phys. Mech. Astronomy. 62, 5–42 (2019)

    Google Scholar 

  19. Bao, Y.Y., Li, L., Shen, L.m., et al.: Modified smoothed particle hydrodynamics approach for modelling dynamic contact angle hysteresis. Acta Mech. Sin. 35, 472–485 (2019).

  20. Oger, G., Doring, M., Alessandrini, B., et al.: Two-dimensional SPH simulations of wedge water entries. J. Comput. Phys. 213, 803–822 (2006)

    Article  MathSciNet  Google Scholar 

  21. Vandamme, J., Zou, Q.P., Reeve, D.E.: Modeling floating object entry and exit using smoothed particle hydrodynamics. J. Waterw Port Coast. Ocean Eng. 137, 213–224 (2011)

    Article  Google Scholar 

  22. Omidvar, P., Stansby, P.K., Rogers, B.D.: Wave body interaction in 2D using smoothed particle hydrodynamics(SPH) with variable particle mass. Int. J. Numer. Meth. Fl. 68, 686–705 (2012)

    Article  MathSciNet  Google Scholar 

  23. Cheng, H., Ming, F.R., Sun, P.N., et al.: Towards the modeling of the ditching of a ground-effect wing ship within the framework of the SPH method. Appl Ocean Res. 82, 370–384 (2019)

    Article  Google Scholar 

  24. Lind, S.J., Stansby, P.K., Rogers, B.D., et al.: Numerical predictions of water-air wave slam using incompressible-compressible smoothed particle hydrodynamics. Appl. Ocean Res. 49, 57–71 (2015)

    Article  Google Scholar 

  25. Gong, K., Shao, S.D., Liu, H., et al.: Two-phase SPH simulation of fluid-structure interactions. J. Fluids. Struct. 65, 155–179 (2016)

    Article  Google Scholar 

  26. Marrone, S., Colagrossi, A., Park, J., et al.: Challenges on the numerical prediction of slamming loads on LNG tank insulation panels. Ocean Eng. 141, 512–530 (2017)

    Article  Google Scholar 

  27. Zou, L., Zhu, G.X., Chen, Z., et al.: Numerical Investigation on the Water Entry of Convex Objects Using a Multiphase Smoothed Particle Hydrodynamics Model. Int. J. Comp. Meth. 15, 1850008 (2018)

    Article  MathSciNet  Google Scholar 

  28. Yan, R., Monaghan, J.J.: Valizadeh, A., et al.: The effect of air on solid body impact with water in two dimensions. J. Fluids Struct. 59, 146–164 (2015)

  29. Monaghan, J.J.: Simulating free surface flows with SPH. J. Comput. Phys. 110, 399–406 (1994)

    Article  Google Scholar 

  30. Yang. Q.Z., Xu, F., Wang. L., et al.: A multi-phase SPH model based on Riemann solvers for simulation of jet breakup. Eng. Anal. Bound. Elem. 111, 134–147 (2020)

  31. Puri, K., Ramachandan, P.: Approximate Riemann solvers for the Godunov SPH (GSPH). J. Comput. Phys. 270, 432–458 (2014)

    Article  MathSciNet  Google Scholar 

  32. Zhang, C., Hu, X.Y.: A weakly compressible SPH method based on a low-dissipation Riemann solver. J. Comput. Phys. 335, 605–620 (2017)

    Article  MathSciNet  Google Scholar 

  33. Rezavand, M., Zhang, C., Hu, X.Y.: A weakly compressible SPH method for violent multi-phase flows with high density ratio. J. Comput. Phys. 109092 (2019)

  34. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  Google Scholar 

  35. Cao, X.Y., Ming, F.R., Zhang, A.M., et al.: Multi-phase SPH modelling of air effect on the dynamic flooding of a damaged cabin. Comput. Fluids. 16, 37–19 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Sun, P.N., Le, T.D., Zhang, A.M.: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR. Eng. Anal. Bound. Elem. 104, 240–258 (2019)

    Article  MathSciNet  Google Scholar 

  37. Colagrossi, A., Landrini, M.: Numerical Simulation of Interfacial Flows by Smoothed Particle Hydrodynamics. J. Comput. Phys. 191, 448–475 (2003)

    Article  Google Scholar 

  38. Zhang, A.M., Sun, P.N., Ming, F.R., et al,: Smoothed particle hydrodynamics and its applications in fluid–structure interactions. J. Hydrodyn. 29, 187–216(2017)

  39. Adami, S., Hu, X.Y., Adams, N.A.: A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231, 7057–7075 (2012)

    Article  MathSciNet  Google Scholar 

  40. Hiroshi, W.: Stability of velocity-Verlet- and Liouville-operator-derived algorithms to integrate non-Hamiltonian systems. J. Chem. Phys. 149, 154101 (2018)

    Article  Google Scholar 

  41. Koh, C.G., Gao, M., Luo, C.: A new particle method for simulation of incompressible free surface flow problems. Internat. J. Numer. Methods Engrg. 89, 1582–1604 (2012)

    Article  MathSciNet  Google Scholar 

  42. Yettou, E.M., Desrochers, A., Champoux, Y.: Experimental study on the water impact of a symmetrical wedge. Fluid Dyn. Res. 38, 47–66 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundations of China (Grant 11972309), the National Natural Science Foundation for Young Scientists of China (Grant 11702220), the Fundamental Research Funds for the Central Universities (Grant 310201901A012), and Overseas Expertise Introduction Project for Discipline Innovation (111 Project) (Grant BP0719007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xu.

Additional information

Executive Editor: Chao Sun

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Xu, F., Yang, Y. et al. Numerical study on the dynamic characteristics of water entry of cavity body using two-phase SPH method. Acta Mech. Sin. 37, 1072–1089 (2021). https://doi.org/10.1007/s10409-021-01060-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01060-8

Keywords

Navigation