Skip to main content
Log in

On the configuration evolution of soft filaments under combined tension and torsion

拉扭组合加载下柔性纤维的构型演化规律研究

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Slender structures, from DNA and proteins to ropes and strings, are widely seen in nature and industry. Soft filaments could undergo stretch, bend and twist deformations, thus enabling complex configuration transitions, including solenoid and plectoneme. The instabilities of twisted filaments under different pulling forces are studied based on the Cosserat rod theory. The connections between geometrical transformation and mechanics are clarified by considering geometric nonlinearities and self-contact. The interconversions of link, twist, and writhe in the complex structures of twisted filaments are discussed. Experiments on the instabilities of nylon 6 filaments under torsion and stretch are performed simultaneously. The theoretical predictions are in reasonable agreement with the experiments. This study sheds light on understanding the formation mechanism of the twisted-and-coiled polymer muscles.

摘要

细长柔性结构, 如DNA、蛋白纤维和绳索等, 在生物和工程领域中广泛存在. 当柔性纤维受到拉伸、弯曲和扭转等形变时, 会 形成螺线管或双螺旋等构型, 并呈现出复杂的构型变化. 本文基于Cosserat杆理论, 研究了在不同张力下柔性纤维的扭转失稳特性. 通过 考虑几何非线性和自接触, 阐明了几何变换与力学之间的联系, 揭示了纤维加捻复杂构型中交联(link)、扭转(twist)和扭曲(writhe)之间 的转化关系. 本文还通过实验研究了尼龙6纤维在拉伸和扭转组合加载下的屈曲和后屈曲现象, 并与理论结果进行了对比, 结果吻合良 好. 相关研究对于深入理解捻卷型纤维基人工肌肉的形成机制具有指导意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Audoly, and Y. Pomeau, Elasticity and Geometry: From Hair Curls to the Non-Linear Response of Shells (Oxford University Press, Oxford, 2010).

    MATH  Google Scholar 

  2. S. J. Gerbode, J. R. Puzey, A. G. McCormick, and L. Mahadevan, How the cucumber tendril coils and overwinds, Science 337, 1087 (2012).

    Article  Google Scholar 

  3. J. F. Marko, and E. D. Siggia, Fluctuations and supercoiling of DNA, Science 265, 506 (1994).

    Article  Google Scholar 

  4. J. T. Miller, A. Lazarus, B. Audoly, and P. M. Reis, Shapes of a suspended curly hair, Phys. Rev. Lett. 112, 068103 (2014).

    Article  Google Scholar 

  5. X. Zhou, S. Fang, X. Leng, Z. Liu, and R. H. Baughman, The power of fiber twist, Acc. Chem. Res. 54, 2624 (2021).

    Article  Google Scholar 

  6. B. H. Sun, Small symmetrical deformation and stress analysis of catenary shells of revolution, Acta Mech. Sin. 38, 421425 (2022).

    Article  MathSciNet  Google Scholar 

  7. Y. Zhang, H. Zhao, H. Yu, Q. Qin, and J. Wang, Tensile behaviors of filaments with misfit of chirality, Acta Mech. Sin. 38, 621604 (2022).

    Article  MathSciNet  Google Scholar 

  8. L. Jiang, X. Zhang, and Y. H. Zhou, Nonlinear static and dynamic mechanical behaviors of Nb3Sn superconducting composite wire: experiment and analysis, Acta Mech. Sin. 39, 122322 (2022).

    Article  Google Scholar 

  9. J. Yuan, and P. Poulin, Fibers do the twist, Science 343, 845 (2014).

    Article  Google Scholar 

  10. N. Charles, M. Gazzola, and L. Mahadevan, Topology, geometry, and mechanics of strongly stretched and twisted filaments: Solenoids, plectonemes, and artificial muscle fibers, Phys. Rev. Lett. 123, 208003 (2019).

    Article  Google Scholar 

  11. A. Ghatak, and L. Mahadevan, Solenoids and plectonemes in stretched and twisted elastomeric filaments, Phys. Rev. Lett. 95, 057801 (2005).

    Article  Google Scholar 

  12. J. M. T. Thompson, and A. R. Champneys, From helix to localized writhing in the torsional post-buckling of elastic rods, Proc. R. Soc. Lond. A 452, 117 (1996).

    Article  MATH  Google Scholar 

  13. V. G. A. Goss, G. H. M. van der Heijden, J. M. T. Thompson, and S. Neukirch, Experiments on snap buckling, hysteresis and loop formation in twisted rods, Exp. Mech. 45, 101 (2005).

    Article  Google Scholar 

  14. J. W. S. Hearle, and A. E. Yegin, 32—The snarling of highly twisted monofilaments, Part I: The load-elongation behaviour with normal snarling, J. Textile Inst. 63, 477 (1972).

    Article  Google Scholar 

  15. J. Coyne, Analysis of the formation and elimination of loops in twisted cable, IEEE J. Ocean. Eng. 15, 72 (1990).

    Article  Google Scholar 

  16. G. H. M. van der Heijden, and J. M. T. Thompson, Helical and localized buckling in twisted rods: A unified analysis of the symmetric case, Nonlinear Dyn. 21, 71 (2000).

    Article  MATH  Google Scholar 

  17. A. Lazarus, J. T. Miller, and P. M. Reis, Continuation of equilibria and stability of slender elastic rods using an asymptotic numerical method, J. Mech. Phys. Solids 61, 1712 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Zhou, and Z. Jia, Pulling actuation enabled by harnessing the torsional instability of hyperelastic soft rods, Extreme Mech. Lett. 55, 101807 (2022).

    Article  Google Scholar 

  19. J. Hu, L. Liu, L. Zeng, Y. He, and D. Liu, Instability of soft elastic filaments under torsion: Experiment and analysis, J. Appl. Mech. 89, 051001 (2022).

    Article  Google Scholar 

  20. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun, Discrete elastic rods, ACM Trans. Graph. 27, 1 (2008).

    Article  Google Scholar 

  21. G. H. M. van der Heijden, S. Neukirch, V. G. A. Goss, and J. M. T. Thompson, Instability and self-contact phenomena in the writhing of clamped rods, Int. J. Mech. Sci. 45, 161 (2003).

    Article  MATH  Google Scholar 

  22. N. Clauvelin, B. Audoly, and S. Neukirch, Matched asymptotic expansions for twisted elastic knots: A self-contact problem with non-trivial contact topology, J. Mech. Phys. Solids 57, 1623 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  23. C. S. Haines, M. D. Lima, N. Li, G. M. Spinks, J. Foroughi, J. D. W. Madden, S. H. Kim, S. Fang, M. Jung de Andrade, F. Göktepe, Ö. Göktepe, S. M. Mirvakili, S. Naficy, X. Lepró, J. Oh, M. E. Kozlov, S. J. Kim, X. Xu, B. J. Swedlove, G. G. Wallace, and R. H. Baughman, Artificial muscles from fishing line and sewing thread, Science 343, 868 (2014).

    Article  Google Scholar 

  24. G. Kirchhoff, Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes, J. Für Die Reine Und Angewandte Mathematik 56, 285 (1859).

    MathSciNet  MATH  Google Scholar 

  25. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Dover Publications, Dover, 1944).

    MATH  Google Scholar 

  26. A. L. Ross, Cable kinking analysis and prevention, J. Eng. Industry 99, 112 (1977).

    Article  Google Scholar 

  27. A. G. Greenhill, On the strength of shafting when exposed both to torsion and to end thrust, Proc. Inst. Mech. Eng. 34, 182 (1883).

    Article  Google Scholar 

  28. S. Neukirch, G. H. M. van der Heijden, and J. M. T. Thompson, Writhing instabilities of twisted rods: From infinite to finite length, J. Mech. Phys. Solids 50, 1175 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Cosserat, and F. Cosserat, Théorie des Corps déformables, Nature 81, 67 (1909).

    Article  MATH  Google Scholar 

  30. M. Gazzola, L. H. Dudte, A. G. McCormick, and L. Mahadevan, Forward and inverse problems in the mechanics of soft filaments, R. Soc. Open Sci. 5, 171628 (2018).

    Article  MathSciNet  Google Scholar 

  31. J. M. Gere, and S. P. Timoshenko, Mechanics of Materials (Van Nostrand Reinhold Company, New York, 1990).

    Google Scholar 

  32. L. Liu, S. Zheng, and D. Liu, Effect of lay direction on the mechanical behavior of multi-strand wire ropes, Int. J. Solids Struct. 185–186, 89 (2020).

    Article  Google Scholar 

  33. F. B. Fuller, Decomposition of the linking number of a closed ribbon: A problem from molecular biology, Proc. Natl. Acad. Sci. USA 75, 3557 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Liu, Y. He, P. Hu, and H. Ding, Characterizing torsional properties of microwires using an automated torsion balance, Exp. Mech. 57, 297 (2017).

    Article  Google Scholar 

  35. D. Liu, Y. He, D. J. Dunstan, B. Zhang, Z. Gan, P. Hu, and H. Ding, Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment, Int. J. Plast. 41, 30 (2013).

    Article  Google Scholar 

  36. Q. Yang, and G. Li, A top-down multi-scale modeling for actuation response of polymeric artificial muscles, J. Mech. Phys. Solids 92, 237 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant Nos. 11972168 and 12272146), the Application Foundation Frontier Project of Wuhan (Grant No. 2020010601012174), the Fundamental Research Funds for the Central Universities (HUST: Grant No. 2021JYCXJJ051), and the National Ten Thousand Talent Program for Young Top-notch Talents.

Author information

Authors and Affiliations

Authors

Contributions

Dabiao Liu designed the research, provided the supervision, and performed the funding acquisition. Lei Liu, Dabiao Liu, and Zhi Yan wrote the first draft of the manuscript. Lei Liu and Dabiao Liu set up the experiment set-up and processed the experiment data. Yuming He helped organize the manuscript. Dabiao Liu, Zhi Yan, and Yuming He revised and edited the final version.

Corresponding author

Correspondence to Dabiao Liu  (刘大彪).

Additional information

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yan, Z., He, Y. et al. On the configuration evolution of soft filaments under combined tension and torsion. Acta Mech. Sin. 39, 222498 (2023). https://doi.org/10.1007/s10409-023-22498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-023-22498-x

Navigation