Skip to main content
Log in

Characterizing Torsional Properties of Microwires Using an Automated Torsion Balance

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In order to characterize the torsional behavior of microwires, an automated torsion tester is established based on the principle of torsion balance. The main challenges in developing a torsion tester at small scales are addressed. An in-situ torsional vibration method for precisely calibrating the torque meter is developed. The torsion tester permits the measurement of torque to nN m, as a function of surface shear strain to a sensitivity of sub-microstrain. Using this technique, we performed (monotonic and/or cyclic) torsion tests on polycrystalline copper and gold wires. It is found that (i) a size effect appears in both the initial yielding and the plastic flow of torsional response; (ii) a reverse plasticity occurs upon unloading in cyclic torsion response; and (iii) the Hall-Petch effect and the strain gradient effect are synergistic. We also performed cyclic torsion tests on human hairs and spider silk which are natural protein fibers with a different morphological structure to metallic wires. It is shown that the single hair exhibits torsional recovery, and that the spider silk displays torsionally superelastic behavior whereby it is able to withstand great shear strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Srikar VT, Spearing SM (2003) A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems. Exp Mech 43(3):238–247

    Article  Google Scholar 

  2. Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci 56(6):654–724

    Article  Google Scholar 

  3. Pantano MF, Espinosa HD, Pagnotta L (2012) Mechanical characterization of materials at small length scales. J Mech Sci Technol 26(2):545–561

    Article  Google Scholar 

  4. Liu D, He Y, Dunstan DJ, Zhang B, Gan Z, Hu P, Ding H (2013) Toward a further understanding of size effects in the torsion of thin metal wires: An experimental and theoretical assessment. Int J Plasticity 41:30–52

    Article  Google Scholar 

  5. Hutchinson JW (2000) Plasticity at the micron scale. Int J Solids Struct 37(1):225–238

    Article  MathSciNet  MATH  Google Scholar 

  6. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: Theory and experiment. Acta Met Mater 42(2):475–487

    Article  Google Scholar 

  7. Dunstan DJ, Ehrler B, Bossis R, Joly S, P’NG KMY, Bushby AJ (2009) Elastic limit and strain hardening of thin wires in torsion. Phys Rev. Lett 103 (15):155–501.

  8. Liu D, He Y, Tang X, Ding H, Hu P (2012) Size effects in the torsion of microscale copper wires: Experiment and analysis. Scripta Mater 66:406–409

    Article  Google Scholar 

  9. Liu D, He Y, Dunstan DJ, Zhang B, Gan Z, Hu P, Ding H (2013) Anomalous plasticity in the cyclic torsion of micron scale metallic wires. Phys Rev. Lett 110(24):244–301

    Article  Google Scholar 

  10. Gan Z, He Y, Liu D, Zhang B, Shen L (2014) Hall–Petch effect and strain gradient effect in the torsion of thin gold wires. Scripta Mater 87:41–44

    Article  Google Scholar 

  11. Liu D, He Y, Shen L, Lei J, Guo S, Peng K (2015) Accounting for the recoverable plasticity and size effect in the cyclic torsion of thin metallic wires using strain gradient plasticity. Mat Sci Eng A-Struct 647:84–90

    Article  Google Scholar 

  12. Chen Y, Kraft O, Walter M (2015) Size effects in thin coarse-grained gold microwires under tensile and torsional loading. Acta Mater 87:78–85

    Article  Google Scholar 

  13. Pharr GM, Herbert EG, Gao Y (2010) The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations. Ann Rev. Mater Res 40(1):271–292

    Article  Google Scholar 

  14. Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single crystals: An STM study. Acta Met Mater 41(10):2855–2865

    Article  Google Scholar 

  15. Swadener JG, George EP (2002) Pharr GM (2002) The correlation of the indentation size effect measured with indenters of various shapes. J Mech Phys Solids 50:681–694

    Article  MATH  Google Scholar 

  16. Zhu TT, Bushby AJ, Dunstan DJ (2008) Size effect in the initiation of plasticity for ceramics in nanoindentation. J Mech Phys Solids 56(4):1170–1185

    Article  Google Scholar 

  17. Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411–425

    Article  MATH  Google Scholar 

  18. Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109–5115

    Article  Google Scholar 

  19. Ehrler B, Hou X, Zhu TT, P’Ng KMY, Walker CJ, Bushby AJ, Dunstan DJ (2008) Grain size and sample size interact to determine strength in a soft metal. Phil Mag 88(25):3043–3050

    Article  Google Scholar 

  20. Haque MA, Saif MTA (2003) Strain gradient effect in nanoscale thin films. Acta Mater 51(11):3053–3061

    Article  Google Scholar 

  21. Moreau P, Raulic M, P’Ng KMY, Gannaway G, Anderson P, Gillin WP, Bushby AJ, Dunstan DJ (2005) Measurement of the size effect in the yield strength of nickel foils. Phil Mag Lett 85(7):339–343

    Article  Google Scholar 

  22. Dong D, Dunstan DJ, Bushby AJ (2015) Plasticity and thermal recovery of thin copper wires in torsion. Phil Mag 95(16–18):1739–1750

    Article  Google Scholar 

  23. Gianola DS, Eberl C (2009) Micro-and nanoscale tensile testing of materials. JOM Journal of the Minerals, Metals and Materials Society 61(3):24–35

    Article  Google Scholar 

  24. Kawabata, S (1989) Measurements of anisotropic mechanical property and thermal conductivity of single fiber for several high performance fibers. In: The 4 th Japan-U. S. Conference on Composite Materials Washington. pp. 253–262.

  25. Mccord MG, Ellison MS (1996) An automated torsion balance for investigation of microstructure of single filaments. I. Polypropylene. J Appl Polym Sci 61(2):293–306

    Article  Google Scholar 

  26. Behlow H, Saini D, Oliveira L, Durham L, Simpson J, Serkiz SM, Skove MJ, Rao AM (2014) Direct measurement of shear properties of microfibers. Rev. Sci Instrum 85(9):095–118

    Article  Google Scholar 

  27. Bushby AJ, Dunstan DJ (2011) Size effects in yield and plasticity under uniaxial and non-uniform loading: Experiment and theory. Phil Mag 91(7–9):1037–1049

    Article  Google Scholar 

  28. Coulomb CA (1784) Memoires de l’Academie Royale des Sciences. Academie royale des sciences, Paris.

  29. Cavendish H (1798) Experiments to determine the density of the earth. Philos Trans Royal Soc London 88:469–526

    Article  Google Scholar 

  30. Gillies GT, Ritter RC (1993) Torsion balances, torsion pendulums, and related devices. Rev. Sci Instrum 64(2):283–309

    Article  Google Scholar 

  31. Peirce FT (1923) The Plasticity of Cotton and Other Materials. J Text I T 14(11):T390–T413

    Article  Google Scholar 

  32. Dhingra RC, Postle R (1974) The Measurement of Torque in Continuous-Filament Yarns, Part 1: Experimental Techniques. J Text I 65(3):126–132

    Article  Google Scholar 

  33. Mitchell P (2006) Torque in Worsted Wool Yarns. Text Res J 76(2):169–180

    Article  Google Scholar 

  34. Mitchell TW, Feughelman M (1960) The Torsional Properties of Single Wool Fibers Part I: Torque-Twist Relationships and Torsional Relaxation in Wet and Dry Fibers. Text Res J 30(9):662–667

    Article  Google Scholar 

  35. Tavanai H, Denton MJ, Tomka JG (1996) Direct objective measurement of yarn-torque level. J Text I 87(1):50–58

    Article  Google Scholar 

  36. Lakes RS (1983) Size effects and micromechanics of a porous solid. J Mater Sci 18(9):2572–2580

    Article  Google Scholar 

  37. Lakes RS (1986) Experimental microelasticity of two porous solids. Int J Solids Struct 22(1):55–63

    Article  Google Scholar 

  38. Lu WY, Song B (2010) Quasi-Static Torsion Characterization of Micro-diameter Copper Wires. Exp Mech 51(5):729–737

    Article  Google Scholar 

  39. Song B, Lu W-Y (2015) An Improved Experimental Technique to Characterize Micro-Diameter Copper Wires in Torsion. Exp Mech 55(5):999–1004

    Article  Google Scholar 

  40. Walter M, Kraft O (2011) A new method to measure torsion moments on small-scaled specimens. Rev. Sci Instrum 82(3):035–109

    Article  Google Scholar 

  41. Mertens JJ (1959) The torque in highly twisted nylon 6 monofilaments. J Text I T 50(1):T70–T82

    Article  MathSciNet  Google Scholar 

  42. Steinberger RL (1936) Torque Relaxation and Torsional Energy in Crêpe Yarn. Text Res J 7(2):83–102

    Article  Google Scholar 

  43. Morton WE, Permanyer F (1947) 8—the Measurement of Torsional Relaxation in Textile Fibres. J Text I T 38(2):T54–T59

    Article  Google Scholar 

  44. Huan Y, Dai Y, Shao Y, Peng G, Feng Y, Zhang T (2014) A novel torsion testing technique for micro-scale specimens based on electromagnetism. Rev. Sci Instrum 85(9):095–106

    Article  Google Scholar 

  45. Skelton J (1965) The measurement of the torsional elastic recovery of filaments. J Text I T 56(8):T443–T453

    Article  Google Scholar 

  46. Kawabata S, Niwa M, Mamiya J (1976) Torsional Testing Apparatus and its Application to Experimental Investigation of the Relations between Torsional Properties of Yarns and Fibers. J Textile Machinery Soc Japan 29(9):T119

    Article  Google Scholar 

  47. Lakes R (1995) Experimental methods for study of Cosserat elastic solids and other generalized continua. In: Muhlhaus HB (ed) Continuum models for materials with micro-structure. John Wiley & Sons, Chichester, p 1–25.

  48. Liu D, He Y, Hu P, Gan Z, Ding H (2014) A modified torsion pendulum for measuring the shear modulus of single micro-sized filament. Acta Mech Solida Sin 27(3):221–232

    Article  Google Scholar 

  49. Yu L, Liu D, Peng K, He Y (2016) An improved torsion pendulum based on image processing for single fibers. Meas Sci Technol 27(7):075,601

    Article  Google Scholar 

  50. Liu D, He Y, Hu P, Ding H, Tang X, Li Z (2012) On the mechanical properties in micro-tensile testing of single fiber. J Exp Mech 27(1):61–69

    Google Scholar 

  51. Mingard KP, Roebuck B, Bennett EG, Gee MG, Nordenstrom H, Sweetman G, Chan P (2009) Comparison of EBSD and conventional methods of grain size measurement of hardmetals. Int J Refract Met Hard Mater 27(2):213–223

    Article  Google Scholar 

  52. Fleck NA, Willis JR (2009) A mathematical basis for strain-gradient plasticity theory-Part I: Scalar plastic multiplier. J Mech Phys Solids 57(1):161–177

    Article  MathSciNet  MATH  Google Scholar 

  53. Fleck NA, Willis JR (2009) A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier. J Mech Phys Solids 57(7):1045–1057

    Article  MathSciNet  MATH  Google Scholar 

  54. Ashby MF (1970) The deformation of plastically non-homogeneous materials. Phil Mag 21(170):399–424

    Article  Google Scholar 

  55. Kiener D, Grosinger W, Dehm G (2009) On the importance of sample compliance in uniaxial microtesting. Scripta Mater 60(3):148–151

    Article  Google Scholar 

  56. Corrêa ECS, Aguilar MTP, Silva EMP, Cetlin PR (2003) The effect of sequential tensile and cyclic torsion straining on work hardening of steel and brass. J Mater Process Technol 142(1):282–288

    Article  Google Scholar 

  57. Freeston WD, Platt MM, Butterworth G (1966) Mechanics of Elastic Performance of Textile Materials Part XVII: Torsional Recovery of Filaments and Singles Yarns, and Plied-Yarn Balance. Text Res J 36(1):12–30

    Article  Google Scholar 

  58. Dhingra RC, Postle R (1974) The measurement of torque in continuous-filament yarns. Part II: the effect of yarn tension. J Text I 65(4):171–181

    Article  Google Scholar 

  59. Robbins CR (2002) Chemical and physical behavior of human hair, vol 4. Springer

  60. Guan J, Porter D, Vollrath F (2012) Silks cope with stress by tuning their mechanical properties under load. Polymer 53(13):2717–2726

    Article  Google Scholar 

  61. Bogaty H (1967) Torsional properties of hair in relation to permanent waving and setting. J Soc Cosmet Chem 18:575–589

    Google Scholar 

  62. Vollrath F, Selden P (2007) The role of behavior in the evolution of spiders, silks, and webs. Annu Rev Ecol, Evol Syst 38:819–846

    Article  Google Scholar 

  63. Guinea GV, Cerdeira M, Plaza GR, Elices M, Pérez-Rigueiro J (2010) Recovery in viscid line fibers. Biomacromolecules 11(5):1174–1179

    Article  Google Scholar 

  64. Sahni V, Blackledge TA, Dhinojwala A (2010) Viscoelastic solids explain spider web stickiness. Nat Commun 1:19

    Article  Google Scholar 

  65. Kumar B, Thakur A, Panda B, Singh KP (2013) Optically probing torsional superelasticity in spider silks. Appl Phys Lett 103(20):201–910

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC (No. 11072084 and No. 11272131), the Natural Science Foundation of Hubei Province (No. 2015CFB394) and the Fundamental Research Funds for the Central Universities (HUST, No. 2015QN138). Dr. D. Liu also thanks support from the European Union through a Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2015–704292). The authors thank the Analytical Testing Center of HUST for providing the SEM and FIB characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. He.

Appendices

Appendix 1

Strain gradient plasticity applied to wire torsion

Phenomenological strain gradient theories of isotropic plasticity represent a relatively simple approach to predict size effects in wire torsion, in which the spatial gradients of plastic strain associated with the GNDs lead to enhanced hardening [4, 6]. Here, the torsion data in Fig. 7 are analyzed by means of the strain gradient plasticity theory proposed by Fleck and Willis [52, 53]. To simplify the analysis, the wires are assumed to be isotropic, incompressible and rigid-plastic. In this case, the plastic behavior can be characterized by the plastic strain rate \( {\dot{\varepsilon}}_{ij}^{\mathrm{pl}} \) and its spatial gradient \( {\dot{\varepsilon}}_{ij,k}^{\mathrm{pl}} \). We restrict attention to the simplest model that contains only one material length scale l. Following Fleck and Hutchinson [6], we express the generalized overall effective plastic strain rate \( {\dot{E}}_P \) as

$$ {\dot{E}}_{\mathrm{P}}={\left[{\dot{\varepsilon}}_{\mathrm{P}}^{\mu }+{\left(l{\dot{\varepsilon}}_{\mathrm{P}}^{\ast}\right)}^{\mu}\right]}^{{\scriptscriptstyle \frac{1}{\mu }}} $$
(A1)

Here, \( {\dot{\varepsilon}}_{\mathrm{P}}=\sqrt{{\scriptscriptstyle \frac{2}{3}}{\dot{\varepsilon}}_{ij}^{\mathrm{pl}}{\dot{\varepsilon}}_{ij}^{\mathrm{pl}}} \) is the standard Von Mises plastic strain rate used to consider the plastic dissipation results from the motion of SSDs, while \( {\dot{\varepsilon}}_{\mathrm{P}}^{\ast }=\sqrt{{\scriptscriptstyle \frac{2}{3}}{\dot{\varepsilon}}_{ij,k}^{\mathrm{pl}}{\dot{\varepsilon}}_{ij,k}^{\mathrm{pl}}} \) is the rate of plastic strain gradient for considering the contribution of GNDs [6, 54]. The exponent μ is an additional material parameter dependent on these two contributions. A Cartesian reference frame (x 1, x 2, x 3) and a cylindrical polar coordinate system (r, θ, x 3) are introduced, as shown in the inset of Fig. 7. The generalized effective plastic strain rate is then given by

$$ {\dot{E}}_{\mathrm{P}}=\frac{\dot{\kappa}}{\sqrt{3}}{\left[{r}^{\mu }+{\left(\sqrt{2}l\right)}^{\mu}\right]}^{{\scriptscriptstyle \frac{1}{\mu }}} $$
(A2)

where \( \dot{\kappa} \) is the twist rate per unit length. The plastic response considering the strain gradient effect for a rigid-hardening solid can be identified as

$$ {\sum}_f={\sigma}_{ref}+{\sigma}_0{E}_P^N $$
(A3)

where \( {E}_P={\displaystyle \int {\dot{E}}_P}\mathrm{d}t \) is the accumulated effective plastic strain. If the strain gradient effect is absent, Equation (A3) is degenerated to a conventional power-law relation, and σ ref is the initial yield stress, σ 0 is a measure of the hardening modulus, N is the hardening exponent. These parameters can be obtained by fitting the tensile data, as listed in Table 2. In wire torsion, the torque Q is work-conjugate to κ, so that the external work rate is \( Q\dot{\kappa} \). And the torque is given by

$$ Q=\frac{1}{\dot{\kappa}}{\displaystyle {\int}_V{\sum}_f{\dot{E}}_P}\mathrm{d}V=\frac{2\pi }{\dot{\kappa}}{\displaystyle {\int}_0^a{\sum}_f{\dot{E}}_Pr\ \mathrm{d}r} $$
(A4)
Table 2 Parameters of tensile stress-strain curves

Substituting Equation (A2) and (A3) into Equation (A4) with μ = 2, one can obtain the normalized torque

$$ \frac{Q}{a^3}=\frac{6\pi {\sigma}_0{\left(\kappa a\right)}^N}{N+3}\left\{{\left[{\scriptscriptstyle \frac{1}{3}}+{\scriptscriptstyle \frac{2}{3}}{\left(l/a\right)}^2\right]}^{\frac{N+3}{2}}-{\left[\sqrt{{\scriptscriptstyle \frac{2}{3}}}\left(l/a\right)\right]}^{N+3}\right\}+\frac{2\sqrt{3}\pi {\sigma}_{ref}}{9}\left\{{\left[1+2{\left(l/a\right)}^2\right]}^{\frac{3}{2}}-2\sqrt{2}{\left(l/a\right)}^3\right\} $$
(A5)

If the torsional response of 2a = 20μm is used as a calibration curve, we obtain l = 0.92μm. The theoretical prediction agrees well with the experimental result, as shown in Fig. 7.

Appendix 2

Estimation of yielding torque

According to Von Mises yield criterion, the conventional yielding torque is estimated as [4]

$$ {Q}_Y=\frac{\pi {a}^3{\sigma}_Y}{2\sqrt{3}} $$
(B1)

where σ Y is the yield strength in tension, a the wire radius. Following Liu et al. [4], we assume σ Y  = 88.0 ± 13.0 MPa, then the yielding torque for copper wires with diameters ranging from 10 to 100 μm is in the range 9.98nN • m ~ 9.98 × 103nN • m.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., He, Y., Hu, P. et al. Characterizing Torsional Properties of Microwires Using an Automated Torsion Balance. Exp Mech 57, 297–311 (2017). https://doi.org/10.1007/s11340-016-0212-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-016-0212-8

Keywords

Navigation