Skip to main content
Log in

Modeling the rate-dependent ductile-brittle transition in amorphous polymers

非晶态聚合物的速率相关韧脆转变模型

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The stress response of amorphous polymers in the glass transition region shows apparent temperature and rate dependence. With increasing loading rate, amorphous polymers also exhibit a clear ductile-brittle transition of tensile failure. The rate-dependent behaviors originate from intrinsic relaxations, ranging from perturbation of molecular bonds between polymer segments to reptation of polymer chains. In this work, we develop a constitutive model that incorporates segmental and chain dynamics into the deformation of bond and polymer networks, respectively. The dynamic scission of polymer chains is also incorporated into the theoretical framework to describe the damage evolution and ultimate failure of polymers. A comparison between theoretical predictions and experiments shows that the present model is able to simultaneously capture the observed rate-dependent features, including the transition from glassy state to rubbery state, strain hardening, and failure threshold.

摘要

非晶态聚合物在玻璃化转变区的应力响应表现出明显的温度和速率依赖性. 随着加载速率的增加, 非晶态聚合物也表现出明显的拉伸破坏的韧脆转变. 速率依赖性行为起源于固有的弛豫, 从聚合物链段之间分子键的扰动到聚合物链的滑移. 本文建立了一个本构模型, 将键段动力学和链动力学分别纳入到键和聚合物网络的变形中. 聚合物链的动态断裂也被纳入到描述聚合物损伤演化和最终失效的理论框架中. 理论预测和实验结果的比较表明, 该模型能够同时捕获观察到的速率相关特征, 包括从玻璃态到橡胶态的转变、应变硬化和失效阈值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Guo, W. Guo, A. V. Amirkhizi, R. Zou, and K. Yuan, Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures, Polym. Testing 53, 234 (2016).

    Article  Google Scholar 

  2. T. K. Khieng, S. Debnath, E. Ting Chaw Liang, M. Anwar, A. Pramanik, and A. K. Basak, A review on mechanical properties of natural fibre reinforced polymer composites under various strain rates, J. Compos. Sci. 5, 130 (2021).

    Article  Google Scholar 

  3. Z. Liao, M. Hossain, X. Yao, M. Mehnert, and P. Steinmann, On thermo-viscoelastic experimental characterization and numerical modelling of VHB polymer, Int. J. Non-Linear Mech. 118, 103263 (2020).

    Article  Google Scholar 

  4. H. Chu, J. Lin, D. Lei, J. Qian, and R. Xiao, A network evolution model for recovery of the mullins effect in filled rubbers, Int. J. Appl. Mech. 12, 2050108 (2020).

    Article  Google Scholar 

  5. A. D. Mulliken, and M. C. Boyce, Mechanics of the rate-dependent elastic-plastic deformation of glassy polymers from low to high strain rates, Int. J. Solids Struct. 43, 1331 (2006).

    Article  Google Scholar 

  6. K. Cao, Y. Wang, and Y. Wang, Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates, Int. J. Solids Struct. 51, 2539 (2014).

    Article  Google Scholar 

  7. C. Jiang, Z. Zhu, J. Zhang, Z. Yang, and H. Jiang, Constitutive modeling of the rate- and temperature-dependent macro-yield behavior of amorphous glassy polymers, Int. J. Mech. Sci. 179, 105653 (2020).

    Article  Google Scholar 

  8. S. Tamrakar, R. Ganesh, S. Sockalingam, B. Z. G. Haque, and J. W. Gillespie Jr., Strain rate-dependent large deformation inelastic behavior of an epoxy resin, J. Compos. Mater. 54, 71 (2020).

    Article  Google Scholar 

  9. L. E. Govaert, T. A. P. Engels, M. Wendlandt, T. A. Tervoort, and U. W. Suter, Does the strain hardening modulus of glassy polymers scale with the flow stress? J. Polym. Sci. B Polym. Phys. 46, 2475 (2008).

    Article  Google Scholar 

  10. C. Tian, R. Xiao, and J. Guo, An experimental study on strain hardening of amorphous thermosets: effect of temperature, strain rate, and network density, J. Appl. Mech. 85, 101012 (2018).

    Article  Google Scholar 

  11. R. Xiao, and C. Tian, A constitutive model for strain hardening behavior of predeformed amorphous polymers: incorporating dissipative dynamics of molecular orientation, J. Mech. Phys. Solids 125, 472 (2019).

    Article  MathSciNet  Google Scholar 

  12. S. S. Sarva, S. Deschanel, M. C. Boyce, and W. Chen, Stress-strain behavior of a polyurea and a polyurethane from low to high strain rates, Polymer 48, 2208 (2007).

    Article  Google Scholar 

  13. J. Yi, M. C. Boyce, G. F. Lee, and E. Balizer, Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes, Polymer 47, 319 (2006).

    Article  Google Scholar 

  14. T. L. Sun, T. Kurokawa, S. Kuroda, A. B. Ihsan, T. Akasaki, K. Sato, M. A. Haque, T. Nakajima, and J. P. Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity, Nat. Mater. 12, 932 (2013).

    Article  Google Scholar 

  15. L. Chen, T. L. Sun, K. Cui, D. R. King, T. Kurokawa, Y. Saruwatari, and J. P. Gong, Facile synthesis of novel elastomers with tunable dynamics for toughness, self-healing and adhesion, J. Mater. Chem. A 7, 17334 (2019).

    Article  Google Scholar 

  16. Z. Liao, X. Yao, L. Zhang, M. Hossain, J. Wang, and S. Zang, Temperature and strain rate dependent large tensile deformation and tensile failure behavior of transparent polyurethane at intermediate strain rates, Int. J. Impact Eng. 129, 152 (2019).

    Article  Google Scholar 

  17. O. U. Colak, and Y. Cakir, Material model parameter estimation with genetic algorithm optimization method and modeling of strain and temperature dependent behavior of epoxy resin with cooperative-VBO model, Mech. Mater. 135, 57 (2019).

    Article  Google Scholar 

  18. Z. Xing, H. Lu, A. Sun, Y. Q. Fu, M. W. Shahzad, and B. B. Xu, Understanding complex dynamics of interfacial reconstruction in polyampholyte hydrogels undergoing mechano-chemo-electrotaxis coupling, J. Phys. D-Appl. Phys. 54, 085301 (2020).

    Article  Google Scholar 

  19. A. Serra-Aguila, J. M. Puigoriol-Forcada, G. Reyes, and J. Menacho, Viscoelastic models revisited: characteristics and interconversion formulas for generalized Kelvin-Voigt and Maxwell models, Acta Mech. Sin. 35, 1191 (2019).

    Article  MathSciNet  Google Scholar 

  20. R. Huang, S. Zheng, Z. Liu, and T. Y. Ng, Recent advances of the constitutive models of smart materials—hydrogels and shape memory polymers, Int. J. Appl. Mech. 12, 2050014 (2020).

    Article  Google Scholar 

  21. J. Lei, Z. Li, S. Xu, and Z. Liu, Recent advances of hydrogel network models for studies on mechanical behaviors, Acta Mech. Sin. 37, 367 (2021).

    Article  Google Scholar 

  22. R. B. Dupaix, and M. C. Boyce, Constitutive modeling of the finite strain behavior of amorphous polymers in and above the glass transition, Mech. Mater. 39, 39 (2007).

    Article  Google Scholar 

  23. T. D. Nguyen, H. Jerry Qi, F. Castro, and K. N. Long, A thermoviscoelastic model for amorphous shape memory polymers: incorporating structural and stress relaxation, J. Mech. Phys. Solids 56, 2792 (2008).

    Article  Google Scholar 

  24. R. Xiao, J. Choi, N. Lakhera, C. M. Yakacki, C. P. Frick, and T. D. Nguyen, Modeling the glass transition of amorphous networks for shape-memory behavior, J. Mech. Phys. Solids 61, 1612 (2013).

    Article  MathSciNet  Google Scholar 

  25. D. S. A. de Focatiis, J. Embery, and C. P. Buckley, Large deformations in oriented polymer glasses: experimental study and a new glass-melt constitutive model, J. Polym. Sci. B Polym. Phys. 48, 1449 (2010).

    Article  Google Scholar 

  26. H. Lu, Z. Xing, M. Hossain, and Y. Q. Fu, Modeling strategy for dynamic-modal mechanophore in double-network hydrogel composites with self-growing and tailorable mechanical strength, Compos. Part B-Eng. 179, 107528 (2019).

    Article  Google Scholar 

  27. C. Miehe, S. Göktepe, and J. Méndez Diez, Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space, Int. J. Solids Struct. 46, 181 (2009).

    Article  Google Scholar 

  28. Z. Xing, H. Lu, M. Hossain, Y. Q. Fu, J. Leng, and S. Du, Cooperative dynamics of heuristic swelling and inhibitive micellization in double-network hydrogels by ionic dissociation of polyelectrolyte, Polymer 186, 122039 (2020).

    Article  Google Scholar 

  29. G. He, Y. Liu, X. Deng, and L. Fan, Constitutive modeling of viscoelastic-viscoplastic behavior of short fiber reinforced polymers coupled with anisotropic damage and moisture effects, Acta Mech. Sin. 35, 495 (2019).

    Article  MathSciNet  Google Scholar 

  30. Y. Yin, N. Bertin, Y. Wang, Z. Bao, and W. Cai, Topological origin of strain induced damage of multi-network elastomers by bond breaking, Extreme Mech. Lett. 40, 100883 (2020).

    Article  Google Scholar 

  31. J. Guo, M. Liu, A. T. Zehnder, J. Zhao, T. Narita, C. Creton, and C. Y. Hui, Fracture mechanics of a self-healing hydrogel with covalent and physical crosslinks: a numerical study, J. Mech. Phys. Solids 120, 79 (2018).

    Article  MathSciNet  Google Scholar 

  32. T. Shen, and F. J. Vernerey, Rate-dependent fracture of transient networks, J. Mech. Phys. Solids 143, 104028 (2020).

    Article  MathSciNet  Google Scholar 

  33. J. Lei, Z. Li, S. Xu, and Z. Liu, A mesoscopic network mechanics method to reproduce the large deformation and fracture process of cross-linked elastomers, J. Mech. Phys. Solids 156, 104599 (2021).

    Article  MathSciNet  Google Scholar 

  34. A. Ghareeb, and A. Elbanna, An adaptive quasicontinuum approach for modeling fracture in networked materials: application to modeling of polymer networks, J. Mech. Phys. Solids 137, 103819 (2020).

    Article  MathSciNet  Google Scholar 

  35. Z. Zhao, M. Lei, Q. Zhang, H. S. Chen, and D. Fang, A general model for the temperature-dependent deformation and tensile failure of photo-cured polymers, Extreme Mech. Lett. 39, 100826 (2020).

    Article  Google Scholar 

  36. Z. Li, and Z. Liu, The elongation-criterion for fracture toughness of hydrogels based on percolation model, J. Appl. Phys. 127, 215101 (2020).

    Article  Google Scholar 

  37. F. Luo, T. L. Sun, T. Nakajima, T. Kurokawa, Y. Zhao, A. B. Ihsan, H. L. Guo, X. F. Li, and J. P. Gong, Crack blunting and advancing behaviors of tough and self-healing polyampholyte hydrogel, Macromolecules 47, 6037 (2014).

    Article  Google Scholar 

  38. A. E. Likhtman, and R. S. Graham, Simple constitutive equation for linear polymer melts derived from molecular theory: rolie-Poly equation, J. Non-Newtonian Fluid Mech. 114, 1 (2003).

    Article  Google Scholar 

  39. E. Kuhl, A. Menzel, and K. Garikipati, On the convexity of transversely isotropic chain network models, Philos. Mag. 86, 3241 (2006).

    Article  Google Scholar 

  40. J. Lin, S. Y. Zheng, R. Xiao, J. Yin, Z. L. Wu, Q. Zheng, and J. Qian, Constitutive behaviors of tough physical hydrogels with dynamic metal-coordinated bonds, J. Mech. Phys. Solids 139, 103935 (2020).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Qian  (钱劲) or Rui Xiao  (肖锐).

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12022204, 12002302 and 12072316), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ21A020008), and the Fundamental Research Funds of Zhejiang Sci-Tech University (Grant No. 2021Q039).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Dai, L., Qian, J. et al. Modeling the rate-dependent ductile-brittle transition in amorphous polymers. Acta Mech. Sin. 38, 121438 (2022). https://doi.org/10.1007/s10409-022-09020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10409-022-09020-x

Keywords

Navigation