Skip to main content

Damage Mechanics Unified Constitutive Modeling for Polymers

  • Living reference work entry
  • First Online:
Handbook of Damage Mechanics
  • 273 Accesses

Abstract

Adequacy of a material model that is based on isothermal properties becomes questionable for non-isothermal cases such as polymer processing which includes continuous change in temperature and rate. For true prediction of thermomechanical response of amorphous polymers under non-isothermal conditions, it is necessary to formulate temperature-dependent material properties and flow rules to provide a smooth transition around glass transition temperature.

An improved version of dual-mechanism viscoplastic constitutive model is presented that is used to describe thermomechanical response of amorphous polymers below and above glass transition temperature. Material property definitions, evolution of internal state variables, and plastic flow rules were revisited to provide a smooth and continuous transition in material response around glass transition temperature, θ g . The elastic-viscoplastic constitutive model is developed based on a thermodynamics framework. For damage evolution in complex thermomechanical problems such as polymer processing, irreversible entropy production rate is used as a damage metric [a.k.a Basaran Damage Evolution Model].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • N.M. Ames et al., A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part II: applications. Int. J. Plast. 25(8), 1495–1539 (2009)

    Article  MATH  Google Scholar 

  • L. Anand, Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids 34, 293–304 (1986)

    Article  Google Scholar 

  • L. Anand, H. On, Hencky’s approximate strain-energy function for moderate deformations. J. Appl. Mech. 46, 78–82 (1979)

    Article  MATH  Google Scholar 

  • L. Anand et al., A thermo-mechanically coupled theory for large deformations of amorphous polymers. Part I: formulation. Int. J. Plast. 25(8), 1474–1494 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • N. Aravas, Finite-strain anisotropic plasticity and the plastic spin. Model. Simul. Mater. Sci. Eng. 2(3A), 483–504 (1994)

    Article  Google Scholar 

  • E.M. Arruda, M.C. Boyce, Evolution of plastic anisotropy in amorphous polymers during finite straining. Int. J. Plast. 9(6), 697–720 (1993)

    Article  Google Scholar 

  • E.M. Arruda, M.C. Boyce, R. Jayachandran, Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mech. Mater. 19(2–3), 193–212 (1995)

    Article  Google Scholar 

  • C. Basaran, M. Lin, Damage mechanics of electromigration induced failure. Mech. Mater. 40(1–2), 66–79 (2007)

    Google Scholar 

  • C. Basaran, S. Nie, A thermodynamics based damage mechanics model for particulate composites. Int. J. Solids Struct. 44(3–4), 1099–1114 (2007)

    Article  MATH  Google Scholar 

  • C. Basaran, C.Y. Yan, A thermodynamic framework for damage mechanics of solder joints. J. Electron. Packag. 120(4), 379–384 (1998)

    Article  Google Scholar 

  • C. Bauwens-Crowet, J.C. Bauwens, G. Homès, Tensile yield-stress behavior of glassy polymers. J. Polym. Sci. Part A-2 Polym. Phys. 7(4), 735–742 (1969)

    Article  Google Scholar 

  • J.S. Bergström, M.C. Boyce, Constitutive modeling of the large strain time-dependent behavior of elastomers. J. Mech. Phys. Solids 46(5), 931–954 (1998)

    Article  MATH  Google Scholar 

  • L. Boltzmann, Lectures on Gas Theory (Dover, New York, 1995)

    Google Scholar 

  • M.C. Boyce, S. Socrate, P.G. Llana, Constitutive model for the finite deformation stress–strain behavior of poly(ethylene terephthalate) above the glass transition. Polymer 41(6), 2183–2201 (2000)

    Article  Google Scholar 

  • A. Chudnovsky et al., in On Fracture of Solids in Studies on Elasticity and Plasticity, ed. by L. Kachanov (Leningrad University Press, Leningrad, 1973), pp. 3–41

    Google Scholar 

  • A.C. Eringen, Mechanics of Continua (Wiley, New York, 1967)

    MATH  Google Scholar 

  • D.G. Fotheringham, B.W. Cherry, The role of recovery forces in the deformation of linear polyethylene. J. Mater. Sci. 13(5), 951–964 (1978)

    Article  Google Scholar 

  • D. Fotheringham, B.W. Cherry, C. Bauwens-Crowet, Comment on “the compression yield behaviour of polymethyl methacrylate over a wide range of temperatures and strain-rates”. J. Mater. Sci. 11(7), 1368–1371 (1976)

    Article  Google Scholar 

  • P. Francisco, S. Gustavo, B.H. Élida, Temperature and strain rate dependence of the tensile yield stress of PVC. J. Appl. Polym. Sci. 61(1), 109–117 (1996)

    Article  Google Scholar 

  • A.N. Gent, A new constitutive relation for rubber. Rubber Chem. Technol. 69(1), 59–61 (1996)

    Article  MathSciNet  Google Scholar 

  • J. Gomez, C. Basaran, Damage mechanics constitutive model for Pb/Sn solder joints incorporating nonlinear kinematic hardening and rate dependent effects using a return mapping integration algorithm. Mech. Mater. 38(7), 585–598 (2006)

    Article  Google Scholar 

  • L.M. Kachanov, Introduction to continuum damage mechanics (M. Nijhoff, Dordrecht/Boston, 1986)

    Google Scholar 

  • E. Kontou, G. Spathis, Application of finite strain viscoplasticity to polymeric fiber composites. Int. J. Plast. 22(7), 1287–1303 (2006)

    Article  MATH  Google Scholar 

  • E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4(1), 273–334 (1959)

    Article  Google Scholar 

  • E.H. Lee, Elastic–plastic deformation at finite strains. J. Appl. Mech. 36, 1–6 (1969)

    Article  MATH  Google Scholar 

  • J. Mandel, Plasticite Classique et Viscoplasticite (Lecture Notes) (International Center for Mechanical Sciences, Udine, 1972)

    Google Scholar 

  • G. Palm, R.B. Dupaix, J. Castro, Large strain mechanical behavior of poly(methyl methacrylate) (PMMA) near the glass transition temperature. J. Eng. Mater. Technol. 128(4), 559–563 (2006)

    Article  Google Scholar 

  • F. Povolo, B.H. Élida, Phenomenological description of strain rate and temperature-dependent yield stress of PMMA. J. Appl. Polym. Sci. 58(1), 55–68 (1995)

    Article  Google Scholar 

  • J. Richeton et al., A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer 46(16), 6035–6043 (2005a)

    Article  Google Scholar 

  • J. Richeton et al., A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer 46(19), 8194–8201 (2005b)

    Article  Google Scholar 

  • J. Richeton et al., Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 43(7–8), 2318–2335 (2006)

    Article  Google Scholar 

  • J. Richeton et al., Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates. Int. J. Solids Struct. 44(24), 7938–7954 (2007)

    Article  MATH  Google Scholar 

  • V. Srivastava et al., A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. Int. J. Plast. 26(8), 1138–1182 (2010)

    Article  MATH  Google Scholar 

  • J. Sweeney et al., Application of an elastic model to the large deformation, high temperature stretching of polypropylene. Polymer 38(24), 5991–5999 (1997)

    Article  Google Scholar 

  • C. Truesdell, The Non-linear Field Theories of Mechanics, 3rd edn. (Springer, New York, 2004)

    Book  Google Scholar 

  • M. Wallin, M. Ristinmaa, Deformation gradient based kinematic hardening model. Int. J. Plast. 21(10), 2025–2050 (2005)

    Article  MATH  Google Scholar 

  • M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77(14), 3701–3707 (1955)

    Article  Google Scholar 

  • H. Ye, C. Basaran, D.C. Hopkins, Damage mechanics of microelectronics solder joints under high current densities. Int. J. Solids Struct. 40(15), 4021–4032 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemal Basaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Basaran, C., Gunel, E. (2014). Damage Mechanics Unified Constitutive Modeling for Polymers. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8968-9_28-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8968-9_28-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8968-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics