Skip to main content
Log in

Hydrodynamic interactions of water waves with a group of independently oscillating truncated circular cylinders

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, we examine the water wave radiation by arrays of truncated circular cylinders. Each cylinder can oscillate independently in any rigid oscillation mode with a prescribed amplitude, including translational and rotational modes such as surge, sway, heave, pitch, roll, and their combinations. Based on the eigenfunction expansion and Graf’s addition theorem for Bessel functions, we developed an analytical method that includes the effects of evanescent modes in order to analyze such arrays of cylinders. To investigate the effects of several influential factors on convergence, our objective is to dramatically reduce the number of tests required and determine the influencing relationships between truncation number and convergence behavior for different factor combinations. We use the orthogonal test method to fulfill the objective. Lastly, we present our results regarding the effects of evanescent modes on hydrodynamic coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Falcão, A.F.O.: Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 14, 899–918 (2010)

    Article  Google Scholar 

  2. Eriksson, M., Waters, R., Svensson, O., et al.: Wave power absorption: Experiments in open sea and simulation. J. Appl. Phys. 102, 084910 (2007)

    Article  Google Scholar 

  3. Dong, Y.-Q.: Wave Loads and Response of the Oil-extraction Platform in Deep Ocean. Tianjin University Press, Tianjin (2005) (in Chinese)

  4. Zeng, X.-H., Li, X.-W., Liu, Y., et al.: Nonlinear dynamic responses of tension leg platform with slack-taut tether. China Ocean Eng. 23, 37–48 (2009)

    Google Scholar 

  5. Zeng, X.-H., Shen, X.-P., Wu, Y.-X.: Governing equations and numerical solutions of tension leg platform with finite amplitude motion. Appl. Math. Mech. Engl. Edition 28, 37–49 (2007)

    Article  MATH  Google Scholar 

  6. Zeng, X.-H., Yu, Y., Zhang, L., et al.: A new energy-absorbing device for motion suppression in deep-sea floating platforms. Energies 8, 111–132 (2015)

    Article  Google Scholar 

  7. Wang, C.-Z., Mitra, S., Huang, H.-C., et al.: Finite element analysis of second order wave radiation by a group of cylinders in the time domain. J. Hydrodyn. 25, 348–361 (2013)

    Article  Google Scholar 

  8. Zhou, B.-Z., Ning, D.-Z., Teng, B., et al.: Fully nonlinear modeling of radiated waves generated by floating flared structures. Acta Mech. Sin. 30, 667–680 (2014)

  9. Babarit, A.: Impact of long separating distances on the energy production of two interacting wave energy converters. Ocean Eng. 37, 718–729 (2010)

    Article  Google Scholar 

  10. Williams, A.N., Demirbilek, Z.: Hydrodynamic interactions in floating cylinder arrays-I: Wave scattering. Ocean Eng. 15, 549–583 (1988)

    Article  Google Scholar 

  11. Williams, A.N., Abul-Azm, A.G.: Hydrodynamic interactions in floating cylinder arrays-II: Wave radiation. Ocean Eng. 16, 217–263 (1989)

    Article  Google Scholar 

  12. Kagemoto, H., Yue, D.K.P.: Interactions among multiple three-dimensional bodies in water waves: an exact algebraic method. J. Fluid Mech. 166, 189–209 (1986)

    Article  MATH  Google Scholar 

  13. Linton, C.M., Evans, D.V.: The interaction of waves with arrays of vertical circular cylinders. J. Fluid Mech. 215, 549–569 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yilmaz, O.: Hydrodynamic interactions of waves with group of truncated vertical cylinders. J. Waterw. Port Coast. Ocean Eng. 124, 272–279 (1998)

    Article  Google Scholar 

  15. Siddorn, P., Eatock Taylor, R.: Diffraction and independent radiation by an array of floating cylinders. Ocean Eng. 35, 1289–1303 (2008)

    Article  Google Scholar 

  16. Chatjigeorgiou, I.K.: The hydrodynamics of arrays of truncated elliptical cylinders. Eur. J. Mech. B/Fluids. 37, 153–164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rao, C.R.: Factorial experiments derivable from combinatorial arrangements of arrays. R. Stat. Soc. (Suppl.) 9, 128–139 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  18. Taguchi, G.: Performance analysis design. Int. J. Prod. Res. 16, 521–530 (1978)

    Article  Google Scholar 

  19. The Orthogonal Test Method Authoring Group: Orthogonal Test Method. National Defence Industry Press, Beijing (1976)

    Google Scholar 

  20. Fang, K.-T., Ma, C.-X.: Orthogonal and Uniform Test Design. Sciense Press, Beijing (2001)

    Google Scholar 

  21. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Application. Springer, New York (1999)

    Book  MATH  Google Scholar 

  22. Azouzi, R., Guillot, M.: On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion. Int. J. Mach. Tools Manuf. 37, 1201–1217 (1997)

    Article  Google Scholar 

  23. Green, P.E., Krieger, A.M., Wind, Y.: Thirty years of conjoint analysis: reflections and prospects. Interfaces 31, 56–73 (2001)

    Article  Google Scholar 

  24. Lee, K.H., Yi, J.W., Park, J.S., et al.: An optimization algorithm using orthogonal arrays in discrete design space for structures. Finite Elem. Anal. Des. 40, 121–135 (2003)

    Article  Google Scholar 

  25. Wang, T., Zhou, X.-Q., Tian, S.-B., et al.: Numerical simulation method for rock natural stress field of a valley and its application based on orthogonal experiments. Rock Soil Mech. 24, 831–835 (2003)

    Google Scholar 

  26. Ali, M.T. , Khalil, G.M.: On hydrodynamic interaction between several freely floating vertical cylinders in waves, In: Proceeding of the 24th International Conference on Offshore Mechanics and Arctic Engineering (2005)

  27. Yilmaz, O., Incecik, A., Barltrop, N.: Wave enhancement due to blockage in semisubmersible and TLP structures. Ocean Eng. 28, 471–490 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (Grants 11072246, 51490673) and the National Basic Research Program (973 Program) of China (Grant 2014CB046801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Zeng.

Appendix

Appendix

The unknown radiation coefficients \(C_{pm}^s ,D_{nm}^{s}\) can be solved from the equation set

$$\begin{aligned}&C_{pm}^{s}+\sum \limits _{n=0}^{\infty } {F_{pn}^m D_{nm}^s } =R_s^{pm}, \end{aligned}$$
(A1a)
$$\begin{aligned}&D_{nm}^s -\sum \limits _{p=0}^{\infty } {G_{np}^m C_{pm}^s } =S_s^{nm}. \end{aligned}$$
(A1b)

The expressions of the known coefficients in Eq. (A1a, A1b) are

$$\begin{aligned} F_{p0}^{m}= & {} -\frac{2}{d-h}\int _{-d}^{-h}\frac{\mathrm{H}_m \left( {k_0 a} \right) }{N_0^{1/2} \mathrm{H}_m^{\prime }\left( {k_0 a} \right) }\cosh [k_0 \left( {z+d} \right) ]\nonumber \\&\cos \left[ {\frac{p\uppi \left( {z+d} \right) }{d-h}} \right] \mathrm{d}z \nonumber \\= & {} -\frac{2\mathrm{H}_m \left( {k_0 a} \right) k_0 (d-h)\left( {-1} \right) ^{p}\sinh [k_0 (d-h)]}{\mathrm{H}_m^{\prime }\left( {k_0 a} \right) N_0^{1/2} \left[ {k_0^2 (d-h)^{2}+\left( {p\uppi } \right) ^{2}} \right] }, \end{aligned}$$
(A2a)
$$\begin{aligned} F_{pn}^{m}= & {} -\frac{2}{d-h}\int _{-d}^{-h}\frac{\mathrm{K}_m \left( {k_{n} a} \right) }{N_{n}^{1/2} \mathrm{K}_m^{\prime }\left( {k_{n} a} \right) }\cos [k_{n} \left( {z+d} \right) ]\nonumber \\&\cos \left[ {\frac{p\uppi \left( {z+d} \right) }{d-h}} \right] \mathrm{d}z \nonumber \\= & {} -\frac{2\mathrm{K}_m \left( {k_{n} a} \right) k_{n} (d-h)\left( {-1} \right) ^{p}\sin [k_{n} (d-h)]}{\mathrm{K}_m^{\prime }\left( {k_{n} a} \right) N_{n}^{1/2} \left[ {k_{n}^2 (d-h)^{2}-\left( {p\uppi } \right) ^{2}} \right] }, \end{aligned}$$
(A2b)
$$\begin{aligned} G_{00}^{(m)}= & {} \frac{1}{k_0 d}\int _{-d}^{-h} {\frac{\left| m \right| }{2a}Z_0 (z)\mathrm{d}z}\nonumber \\= & {} \frac{m\cdot \sinh k_0 (d-h)}{\sqrt{2}\cdot a\cdot d\cdot k_0 ^{2}\left[ {1+\frac{\sinh (2k_0 d)}{2k_0 d}} \right] ^{1/2}},\,\,\,n=0,p=0, \end{aligned}$$
(A3a)
$$\begin{aligned} G_{n0}^{(m)}= & {} \frac{1}{k_{n} d}\int _{-d}^{-h} {\frac{\left| m \right| }{2a}Z_{n} (z)\mathrm{d}z}\nonumber \\= & {} \frac{m\cdot \sin [k_{n} (d-h)]}{\sqrt{2}\cdot a\cdot d\cdot k_{n} ^{2}\left[ {1+\frac{\sin (2k_{n} d)}{2k_{n} d}} \right] ^{1/2}},\,\,\,n\geqslant 1,p=0, \end{aligned}$$
(A3b)
$$\begin{aligned} G_{0p}^{(m)}= & {} \frac{1}{k_0 d}\int _{-d}^{-h} {\frac{p\uppi }{d-h}\frac{\mathrm{I}_m^{\prime }\left( {\frac{p\uppi a}{d-h}} \right) }{\mathrm{I}_m \left( {\frac{p\uppi a}{d-h}} \right) }\cos \left[ {\frac{p\uppi \left( {z+d} \right) }{d-h}} \right] Z_0 (z)\mathrm{d}z} \nonumber \\= & {} \frac{\mathrm{I}'_m \left( \frac{p\uppi a}{d-h}\right) \sqrt{2}p\uppi (d-h)(-1)^{p}\cdot \sinh [k_0 (d-h)]}{\mathrm{I}_m \left( \frac{p\uppi a}{d-h}\right) \cdot d\cdot \left[ {1+\frac{\sinh (2k_0 d)}{2k_0 d}} \right] ^{1/2}\cdot [k_0 ^{2}(d-h)^{2}+p^{2}\uppi ^{2}]},\nonumber \\&n=0,p\geqslant 1, \end{aligned}$$
(A3c)
$$\begin{aligned} G_{np}^{(m)}= & {} \frac{1}{k_{n} d}\int _{-d}^{-h} {\frac{p\uppi }{d-h}\frac{\mathrm{I}_m^{\prime }\left( {\frac{p\uppi a}{d-h}} \right) }{\mathrm{I}_m \left( {\frac{p\uppi a}{d-h}} \right) }\cos \left[ {\frac{p\uppi \left( {z+d} \right) }{d-h}} \right] Z_{n} (z)\mathrm{d}z}\nonumber \\= & {} \frac{\mathrm{I}'_m \left( \frac{p\uppi a}{d-h}\right) \sqrt{2}p\uppi (d-h)(-1)^{p}\cdot \sin [k_{n} (d-h)]}{\mathrm{I}_m \left( \frac{p\uppi a}{d-h}\right) \cdot d\cdot \left[ {1+\frac{\sin (2k_{n} d)}{2k_{n} d}} \right] ^{1/2}\cdot [k_{n} ^{2}(d-h)^{2}-p^{2}\uppi ^{2}]},\nonumber \\&n\geqslant 1,p\geqslant 1, \end{aligned}$$
(A3d)
(A4a)
(A4b)

The diffraction transfer matrices of the truncated single cylinders \(\varvec{B}_{j}^\mathrm{E} \) and \(\varvec{B}_{j}^\mathrm{C} \)are obtained following the procedure given in Kagemoto and Yue [12], the elements of \(\varvec{B}_{j}^\mathrm{E} \) (or \(\varvec{B}_{j}^\mathrm{C} )\) are the amplitude of the q-th (or p-th) partial wave of the diffraction potential due to a single unit-amplitude incidence of mode n on cylinder j, which are listed below

$$\begin{aligned} {B}_{j}^\mathrm{E} (0,0,m)= & {} -\frac{\mathrm{J}'_m (k_0 a)}{\mathrm{H}'_m (k_0 a)}+\frac{D_0^m \cosh (k_0 d)}{\mathrm{H}'_m (k_0 a)N_0^{1/2} \hbox {e}^{\mathrm{i}m(\uppi /2-\beta )}},\nonumber \\&\quad n=0,q=0, \end{aligned}$$
(A5a)
$$\begin{aligned} {B}_{j}^\mathrm{E} (q,0,m)= & {} \frac{D_q^m }{\mathrm{K}'_m (k_q a)N_q^{1/2} \hbox {e}^{\mathrm{i}m(\uppi /2-\beta )}},\nonumber \\&\quad n=0,q\geqslant 1, \end{aligned}$$
(A5b)
$$\begin{aligned} {B}_{j}^\mathrm{E} (0,n,m)= & {} \frac{D[n]_0^m \cosh (k_0 d)}{\mathrm{H}'_m (k_0 a)N_0^{1/2}},\quad n\geqslant 1,q=0\end{aligned}$$
(A5c)
$$\begin{aligned} {B}_{j}^\mathrm{E} (q,n,m)= & {} \left\{ {\begin{array}{l} \frac{D[n]_q^m }{\mathrm{K}'_l (k_q a)N_q^{1/2}},\\ \quad n\geqslant 1,q\geqslant 1,q\ne n, \\ -\frac{\mathrm{I}'_m (k_q a)}{\mathrm{K}'_m (k_q a)}+\frac{D[n]_q^m }{\mathrm{K}'_m (k_q a)N_q^{1/2}}\\ \quad n\geqslant 1,q\geqslant 1,q=n, \\ \end{array}} \right. \end{aligned}$$
(A5d)
$$\begin{aligned} {B}_{j}^{\mathrm{C}} (0,0,m)= & {} \frac{C_0^m }{2a^{\left| m \right| }\mathrm{i}^{m}}, \quad n=0,p=0, \end{aligned}$$
(A6a)
$$\begin{aligned} {B}_{j}^{\mathrm{C}} (p,0,m)= & {} \frac{C_p^m }{\mathrm{I}_m \left[ {p\uppi a/(d-h)} \right] \mathrm{i}^{m}}\cdot \cos \left[ {\frac{p\uppi (z+d)}{d-h}} \right] ,\nonumber \\&\quad n=0,p\geqslant 1, \end{aligned}$$
(A6b)
$$\begin{aligned} {B}_{j}^\mathrm{C} (0,n,m)= & {} \frac{C[n]_0^m }{2a^{\left| m \right| }},\quad n\geqslant 1,p=0, \end{aligned}$$
(A6c)
$$\begin{aligned} {B}_{j}^\mathrm{C} (p,n,m)= & {} \frac{C[n]_p^m }{\mathrm{I}_m \left[ {p\uppi a/(d-h)} \right] }\cdot \cos \left[ {\frac{p\uppi (z+d)}{d-h}} \right] ,\nonumber \\&\quad n\geqslant 1,p\geqslant 1. \end{aligned}$$
(A6d)

Coefficients such as \(C[n]_p^m \), \(D[n]_q^m\) are determined by linear algebraic equations having the same form as Eq. (A1a, A7b), which can be found in Ref. [27] and are not detailed here.

The details of \(\varvec{A}_{{\mathrm{R}j}} \), \(\varvec{B}_{j}^\mathrm{E} \), \(\varvec{T}_{{ij}} \), \(\varvec{R}_{{is}}\) are given in Eq. (A7a-d). For computation, the infinite terms are truncated to \(m_0, l_0, q_0, n_0\) terms, where \(m_0, l_0, q_0, n_0\) are the upper limit values of the truncation numbers for m, l, q, n. For clarity, parentheses are inserted in the subscript of element of column vector shown in Eq. (A7a, A7b), which are omitted in Eqs. (20) and (13) in the main body of the manuscript.

The element in Eq. (A7c) can be obtained using Eq. (A5), as follows

The element \({T}_{{ij}} (n,m,l)\) in Eq. (A7d) is as follows

  • if \(n=0\), then \(T_{ij} (n,m,l)=\mathrm{H}_{m-l} (k_0 L_{ij} )\hbox {e}^{\mathrm{i}\alpha _{ij} (m-l)}\;\);

  • if \(n\geqslant 1\), then \(T_{ij} (n,m,l)=\mathrm{K}_{m-l} (k_{n} L_{ij} )\hbox {e}^{\mathrm{i}\alpha _{ij} (m-l)}(-1)^{l}\).

$$\begin{aligned} \varvec{A}_{\mathrm{R}j}^\mathrm{T}= & {} \left[ A_{\mathrm{R}(0,-m_0 )}^{(j)} A_{\mathrm{R}(0,-m_0 +1)}^{(j)} A_{\mathrm{R}(0,-m_0 +2)}^{(j)} \ldots A_{\mathrm{R}(0,m_0 -2)}^{(j)} \right. \nonumber \\&\left. A_{\mathrm{R}(0,m_0 -1)}^{(j)} A_{\mathrm{R}(0,m_0 )}^{(j)}A_{\mathrm{R}(1,-m_0 )}^{(j)} A_{\mathrm{R}(1,-m_0 +1)}^{(j)} \cdots \right. \nonumber \\&\left. A_{\mathrm{R}(1,m_0 -1)}^{(j)} A_{\mathrm{R}(1,m_0 )}^{(j)} \cdots A_{\mathrm{R}(n_0 -1,-m_0 )}^{(j)}\right. \nonumber \\&\left. A_{\mathrm{R}(n_0 -1,-m_0 +1)}^{(j)} \cdots A_{\mathrm{R}(n_0 -1,m_0 -1)}^{(j)} A_{\mathrm{R}(n_0 -1,m_0 )}^{(j)}\right] , \end{aligned}$$
(A7a)
$$\begin{aligned} \varvec{R}_{{i}s}^\mathrm{T}= & {} \left[ R_{(0,-m_0 ,s)}^{(i)} R_{(0,-m_0 +1,s)}^{(i)} R_{(0,-m_0 +2,s)}^{(i)} \cdots \right. \nonumber \\&\left. R_{(0,m_0 -2,s)}^{(i)} R_{(0,m_0 -1,s)}^{(i)} R_{(0,m_0 ,s)}^{(i)} R_{(1,-m_0 ,s)}^{(i)} R_{(1,-m_0 +1,s)}^{(i)} \cdots \right. \nonumber \\&\left. R_{(1,m_0 -1,s)}^{(j)} R_{(1,m_0 ,s)}^{(j)} \cdots R_{(n_0 -1,-m_0 ,s)}^{(i)} R_{(n_0 -1,-m_0 +1,s)}^{(i)}\right. \cdots \nonumber \\&\left. R_{(n_0 -1,m_0 -1,s)}^{(i)} R_{(n_0 -1,m_0 ,s)}^{(i)}\right] . \end{aligned}$$
(A7b)
(A7c)
(A7d)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Shi, M. & Huang, S. Hydrodynamic interactions of water waves with a group of independently oscillating truncated circular cylinders. Acta Mech. Sin. 32, 773–791 (2016). https://doi.org/10.1007/s10409-016-0567-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-016-0567-1

Keywords

Navigation