Skip to main content
Log in

Fish-Inspired Oscillating and/or Undulating Hydrofoil in a Free Stream Flow: A Review on Thrust Generation Mechanisms

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

A review of recent literature on thrust generation mechanisms by a hydrofoil, bioinspired from fish locomotion is presented. The present work considers fish-inspired periodic kinematics of three types: pitching, heaving, and undulations along with the combination of some of these motions. The pitching corresponds to the tail of the fish while heaving and undulation correspond to that of the body. The undulation also corresponds to the surface of the body; for certain fishes. Both numerical and experimental studies in this arena have been reviewed. The present review follows the classification of oscillatory and undulatory motion. We discuss oscillatory motion with emphasis on pitching, heaving, and the combination of these two motions. In undulatory motion, we cover body undulation and surface undulation motion as a propulsive mechanism. We compare and contrast wake signatures, thrust, and propulsive efficiencies for different motion types. A future outlook, which may help researchers to identify open questions, has been provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Similar content being viewed by others

References

  1. Lindsey CC (1978) 1 - form, function, and locomotory habits in fish. Fish Physiology 7:1–100

    Article  Google Scholar 

  2. Fish F, Lauder GV (2006) Passive and active flow control by swimming fishes and mammals. Annu Rev Fluid Mech 38:193–224

    Article  Google Scholar 

  3. Fish F, Lauder G (2006) Passive and active flow control by swimming fishes and mammals. Annu Rev Fluid Mech 38:193–224

    Article  Google Scholar 

  4. De Langre E, Gutierrez A, Cossé J (2012) On the scaling of drag reduction by reconfiguration in plants. Comptes Rendus Mécanique 340(1–2):35–40

    Google Scholar 

  5. Gosselin F, De Langre E, Machado-Almeida BA (2010) Drag reduction of flexible plates by reconfiguration. J Fluid Mech 650:319–341

    Article  CAS  Google Scholar 

  6. Luhar M, Nepf HM (2011) Flow induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol Oceanogr 56(6):2003–2017

    Article  Google Scholar 

  7. Bhardwaj R, Mittal R (2012) Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation. AIAA J 50:1638–1642

    Article  Google Scholar 

  8. Wu J, Qiu Y, Shu C, Zhao N (2014) Flow control of a circular cylinder by using an attached flexible filament. Phys Fluids 26(10):103601

    Article  Google Scholar 

  9. Kundu A, Soti AK, Bhardwaj R, Thompson MC (2017) The response of an elastic splitter plate attached to a cylinder to laminar pulsatile flow. J Fluids Struct 68:423–443

    Article  Google Scholar 

  10. Blake RW (1979) The energetics of hovering in the mandarin fish (synchropus picturatus). J Exp Biol 82(1):25–33

    Article  Google Scholar 

  11. Zerihan J, Zhang X (2000) Aerodynamics of a single element wing in ground effect. J Aircr 37(6):1058–1064

    Article  Google Scholar 

  12. Blevins E, Lauder GV (2013) Swimming near the substrate: a simple robotic model of stingray locomotion. Bioinspiration & biomimetics 8(1):016005

    Article  Google Scholar 

  13. Baddoo PJ, Kurt M, Ayton LJ, Moored KW (2020) Exact solutions for ground effect. J Fluid Mech 891:2

    Article  Google Scholar 

  14. Mivehchi A, Zhong Q, Kurt M, Quinn DB, Moored KW (2021) Scaling laws for the propulsive performance of a purely pitching foil in ground effect. J Fluid Mech 919:1

    Article  Google Scholar 

  15. Fish FE (2002) Balancing requirements for stability and maneuverability in cetaceans. Integr Comp Biol 42(1):85–93

    Article  PubMed  Google Scholar 

  16. Woodward BL, Winn JP, Fish FE (2006) Morphological specializations of baleen whales associated with hydrodynamic performance and ecological niche. J Morphol 267(11):1284–1294

    Article  PubMed  Google Scholar 

  17. Friedmann E, Portl J, Richter T (2010) A study of shark skin and its drag reducing mechanism. Advances in Mathematical Fluid Mechanics: dedicated to Giovanni Paolo Galdi on the occasion of his 60th birthday, 271–285

  18. Gabler-Smith M, Lauder GV (2022) Ridges and riblets: shark skin surfaces versus biomimetic models. Frontiers in Marine Science, 1631

  19. Bushnell DM, Moore K (1991) Drag reduction in nature. Annu Rev Fluid Mech 23(1):65–79

    Article  Google Scholar 

  20. Fish FE, Battle JM (1995) Hydrodynamic design of the humpback whale flipper. J Morphol 225(1):51–60

    Article  CAS  PubMed  Google Scholar 

  21. Lim H-C, Lee S-J (2002) Flow control of circular cylinders with longitudinal grooved surfaces. AIAA J 40(10):2027–2036

    Article  CAS  Google Scholar 

  22. Lee S-J, Nguyen A-T (2007) Experimental investigation on wake behind a wavy cylinder having sinusoidal cross-sectional area variation. Fluid Dyn Res 39(4):292

    Article  Google Scholar 

  23. Fish FE, Howle LE, Murray MM (2008) Hydrodynamic flow control in marine mammals. Integr Comp Biol 48(6):788–800

    Article  PubMed  Google Scholar 

  24. Mao Q, Zhao J, Liu Y, Sung HJ (2022) Drag reduction by a flexible hairy coating. J Fluid Mech 946:5

    Article  Google Scholar 

  25. Sooraj P, Ramagya MS, Khan MH, Sharma A, Agrawal A (2020) Effect of superhydrophobicity on the flow past a circular cylinder in various flow regimes. J Fluid Mech 897:21

    Article  Google Scholar 

  26. Sooraj P, Jain S, Agrawal A (2019) Flow over hydrofoils with varying hydrophobicity. Exp Thermal Fluid Sci 102:479–492

    Article  CAS  Google Scholar 

  27. Kerho M, Hutcherson S, Blackwelder R, Liebeck R (1993) Vortex generators used to control laminar separation bubbles. J Aircr 30(3):315–319

    Article  Google Scholar 

  28. Lin JC (2002) Review of research on low-profile vortex generators to control boundary-layer separation. Prog Aerosp Sci 38(4–5):389–420

    Article  Google Scholar 

  29. Manolesos M, Voutsinas SG (2015) Experimental investigation of the flow past passive vortex generators on an airfoil experiencing three-dimensional separation. J Wind Eng Ind Aerodyn 142:130–148

    Article  Google Scholar 

  30. Wortmann F (1973) A critical review of the physical aspects of airfoil design at low mach numbers. NASA CR 2315:179–196

    Google Scholar 

  31. Selig MS, Gopalarathnam A, Giguere P, Lyon C (2001) Systematic airfoil design studies at low reynolds numbers. Prog Astronaut Aeronaut 195:143–167

    Google Scholar 

  32. Gopalarathnam A, Broughton BA, McGranahan BD, Selig MS (2003) Design of low reynolds number airfoils with trips. J Aircr 40(4):768–775

    Article  Google Scholar 

  33. Hertel H (1966) Structure form movement. English Language Edition

  34. Seifert A, Darabi A, Wyganski I (1996) Delay of airfoil stall by periodic excitation. J Aircr 33(4):691–698

    Article  Google Scholar 

  35. Aubrun S, McNally J, Alvi F, Kourta A (2011) Separation flow control on a generic ground vehicle using steady microjet arrays. Exp Fluids 51(5):1177–1187

    Article  Google Scholar 

  36. Das A, Shukla RK, Govardhan RN (2016) Existence of a sharp transition in the peak propulsive efficiency of a low-\(re\) pitching foil. J Fluid Mech 800:307–326

    Article  CAS  Google Scholar 

  37. Dewey PA, Boschitsch BM, Moored KW, Stone HA, Smits AJ (2013) Scaling laws for the thrust production of flexible pitching panels. J Fluid Mech 732:29–46

    Article  Google Scholar 

  38. Manjunathan SA, Bhardwaj R (2020) Thrust generation by pitching and heaving of an elastic plate at low reynolds number. Phys Fluids 32(7):073601

    Article  CAS  Google Scholar 

  39. David MJ, Govardhan R, Arakeri J (2017) Thrust generation from pitching foils with flexible trailing edge flaps. J Fluid Mech 828:70–103

    Article  Google Scholar 

  40. Lewin GC, Haj-Hariri H (2003) Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow. J Fluid Mech 492:339–362

    Article  Google Scholar 

  41. Wei Z, Zheng Z (2014) Mechanisms of wake deflection angle change behind a heaving airfoil. J Fluids Struct 48:1–13

    Article  Google Scholar 

  42. Floryan D, Van Buren T, Rowley CW, Smits AJ (2017) Scaling the propulsive performance of heaving and pitching foils. J Fluid Mech 822:386–397

    Article  Google Scholar 

  43. Deng J, Xm S, Al R (2006) Numerical study on propulsive performance of fish-like swimming foils. J Hydrodyn 18(6):681–687

    Article  Google Scholar 

  44. Thekkethil N, Sharma A, Agrawal A (2018) Unified hydrodynamics study for various types of fishes-like undulating rigid hydrofoil in a free stream flow. Phys Fluids 30(7):077107

    Article  Google Scholar 

  45. Andersen A, Bohr T, Schnipper T, Walther JH (2017) Wake structure and thrust generation of a flapping foil in two-dimensional flow. J Fluid Mech 812:4

    Article  Google Scholar 

  46. Triantafyllou GS, Triantafyllou M, Grosenbaugh M (1993) Optimal thrust development in oscillating foils with application to fish propulsion. J Fluids Struct 7(2):205–224

    Article  Google Scholar 

  47. Schouveiler L, Hover F, Triantafyllou M (2005) Performance of flapping foil propulsion. J Fluids Struct 20(7):949–959

    Article  Google Scholar 

  48. Godoy-Diana R, Aider J-L, Wesfreid JE (2008) Transitions in the wake of a flapping foil. Phys Rev E 77(1):016308

    Article  Google Scholar 

  49. Schnipper T, Andersen A, Bohr T (2009) Vortex wakes of a flapping foil. J Fluid Mech 633:411–423

    Article  Google Scholar 

  50. Shinde SY, Arakeri JH (2014) Flexibility in flapping foil suppresses meandering of induced jet in absence of free stream. J Fluid Mech 757:231–250

    Article  Google Scholar 

  51. Shinde SY, Arakeri JH (2018) Physics of unsteady thrust and flow generation by a flexible surface flapping in the absence of a free stream. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2218):20180519

    Article  Google Scholar 

  52. Jones G, Santer M, Papadakis G (2018) Control of low Reynolds number flow around an airfoil using periodic surface morphing: A numerical study. J Fluids Struct 76:95–115

    Article  Google Scholar 

  53. Jodin G, Motta V, Scheller J, Duhayon E, Döll C, Rouchon J-F, Braza M (2017) Dynamics of a hybrid morphing wing with active open loop vibrating trailing edge by time-resolved piv and force measures. J Fluids Struct 74:263–290

    Article  Google Scholar 

  54. Jones G, Santer M, Debiasi M, Papadakis G (2018) Control of flow separation around an airfoil at low reynolds numbers using periodic surface morphing. J Fluids Struct 76:536–557

    Article  Google Scholar 

  55. Breder CM Jr (1926) The locomotion of fishes. Zoologica 4:159–291

    Google Scholar 

  56. Videler JJ (1993) Fish swimming 10

  57. Nelson J (1994) Fishes of the world, john wiley, sons, new york. Fish. World: i–xvii, 1–600

  58. Sfakiotakis M, Lane DM, Davies JBC (1999) Review of fish swimming modes for aquatic locomotion. IEEE J Oceanic Eng 24(2):237–252

    Article  Google Scholar 

  59. Vogel S (1987) Flow-assisted mantle cavity refilling in jetting squid. Biol Bull 172(1):61–68

    Article  Google Scholar 

  60. Bartol IK, Krueger PS, Jastrebsky RA, Williams S, Thompson JT (2016) Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first. J Exp Biol 219(3):392–403

    PubMed  Google Scholar 

  61. Mahulkar SV, Arakeri JH (2023) A self-propelling clapping body. J Fluid Mech 971:25

    Article  Google Scholar 

  62. Gray J (1936) Studies in animal locomotion: Vi. the propulsive powers of the dolphin. Journal of experimental biology 13(2), 192–199

  63. Fish FE (2006) The myth and reality of gray’s paradox: implication of dolphin drag reduction for technology. Bioinspiration & biomimetics 1(2):17

    Article  Google Scholar 

  64. Taylor GI (1952) Analysis of the swimming of long and narrow animals. Proc R Soc Lond A 214(1117):158–183

    Article  Google Scholar 

  65. Garrick I (1936) Propulsion of a flapping and oscillating aerofoil, naca. Technical report, Report

    Google Scholar 

  66. Lighthill M (1960) Note on the swimming of slender fish. J Fluid Mech 9(2):305–317

    Article  Google Scholar 

  67. Wu TY-T (1961) Swimming of a waving plate. J Fluid Mech 10(3):321–344

    Article  Google Scholar 

  68. Lighthill MJ (1970) Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 44(2):265–301

    Article  Google Scholar 

  69. Liu H, Wassersug R, Kawachi K (1996) A computational fluid dynamics study of tadpole swimming. J Exp Biol 199(6):1245–1260

    Article  CAS  PubMed  Google Scholar 

  70. Freymuth P (1990) Thrust generation by an airfoil in hover modes. Exp Fluids 9(1–2):17–24

    Article  Google Scholar 

  71. Koochesfahani MM (1989) Vortical patterns in the wake of an oscillating airfoil. AIAA J 27(9):1200–1205

    Article  Google Scholar 

  72. Gopalkrishnan R, Triantafyllou MS, Triantafyllou GS, Barrett D (1994) Active vorticity control in a shear flow using a flapping foil. J Fluid Mech 274:1–21

    Article  Google Scholar 

  73. Taneda S, Tomonari Y (1974) An experiment on the flow around a waving plate. J Phys Soc Jpn 36(6):1683–1689

    Article  Google Scholar 

  74. Munday D, Jacob J (2002) Active control of separation on a wing with oscillating camber. J Aircr 39(1):187–189

    Article  Google Scholar 

  75. Weihs D (1972) Semi-infinite vortex trails, and their relation to oscillating airfoils. J Fluid Mech 54(4):679–690

    Article  Google Scholar 

  76. Anderson JM, Streitlien K, Barrett D, Triantafyllou MS (1998) Oscillating foils of high propulsive efficiency. J Fluid Mech 360:41–72

    Article  Google Scholar 

  77. Shen L, Zhang X, Yue DK, Triantafyllou MS (2003) Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion. J Fluid Mech 484:197–221

    Article  Google Scholar 

  78. Ivashchenko B, Il’Ichev K, Postolovskii S (1975) Hydrodynamic effect of a traveling wave. Fluid Dyn 10(1):122–124

    Article  Google Scholar 

  79. Triantafyllou MS, Hover FS, Techet AH, Yue DKP (2005) Review of Hydrodynamic Scaling Laws in Aquatic Locomotion and Fishlike Swimming. Appl Mech Rev 58(4):226–237

    Article  Google Scholar 

  80. Smits AJ (2019) Undulatory and oscillatory swimming. J Fluid Mech 874:1

    Article  Google Scholar 

  81. Lauder GV (2015) Fish locomotion: recent advances and new directions. Ann Rev Mar Sci 7:521–545

    Article  PubMed  Google Scholar 

  82. Ashraf I, Agrawal A, Khan MH, PS, Srivastava A, Sharma A (2015) Thrust generation and wake structure for flow across a pitching airfoil at low reynolds number. Sadhana 40, 2367–2379

  83. Bohl DG, Koochesfahani MM (2009) Mtv measurements of the vortical field in the wake of an airfoil oscillating at high reduced frequency. J Fluid Mech 620:63–88

    Article  Google Scholar 

  84. Mackowski A, Williamson C (2015) Direct measurement of thrust and efficiency of an airfoil undergoing pure pitching. J Fluid Mech 765:524–543

    Article  CAS  Google Scholar 

  85. Sarkar S, Venkatraman K (2006) Numerical simulation of thrust generating flow past a pitching airfoil. Computers & Fluids 35(1):16–42

    Article  CAS  Google Scholar 

  86. Das A, Shukla RK, Govardhan RN (2022) Contrasting thrust generation mechanics and energetics of flapping foil locomotory states characterized by a unified scaling. J Fluid Mech 930:27

    Article  Google Scholar 

  87. Mallah SR, Sooraj P, Sharma A, Agrawal A (2021) Effect of superhydrophobicity on the wake of a pitching foil across various strouhal numbers. Physics of Fluids 33(11)

  88. Muhammad Z, Alam MM, Noack BR (2022) Efficient thrust enhancement by modified pitching motion. Journal of Fluid Mechanics 933

  89. Van Buren T, Floryan D, Quinn D, Smits A (2017) Nonsinusoidal gaits for unsteady propulsion. Physical Review Fluids 2(5):053101

    Article  Google Scholar 

  90. Liang C, Ou K, Premasuthan S, Jameson A, Wang Z (2011) High-order accurate simulations of unsteady flow past plunging and pitching airfoils. Computers & Fluids 40(1):236–248

    Article  Google Scholar 

  91. Chao L-M, Pan G, Zhang D, Yan G-X (2019) Numerical investigations on the force generation and wake structures of a nonsinusoidal pitching foil. J Fluids Struct 85:27–39

    Article  Google Scholar 

  92. Das A, Shukla RK, Govardhan RN (2019) Foil locomotion through non-sinusoidal pitching motion. J Fluids Struct 89:191–202

    Article  Google Scholar 

  93. Thakor M, Kumar G, Das D, De A (2020) Investigation of asymmetrically pitching airfoil at high reduced frequency. Phys Fluids 32(5):053607

    Article  CAS  Google Scholar 

  94. Xie Y, Lu K, Zhang D, Xie G, et al (2014) Computational analysis of propulsion performance of modified pitching motion airfoils in laminar flow. Mathematical Problems in Engineering 2014

  95. Chao L-M, Mahbub Alam M, Cheng L (2022) Hydrodynamic performance of slender swimmer: effect of travelling wavelength. J Fluid Mech 947:8

    Article  Google Scholar 

  96. Shyy W, Lian Y, Tang J, Liu H, Trizila P, Stanford B, Bernal L, Cesnik C, Friedmann P, Ifju P (2008) Computational aerodynamics of low reynolds number plunging, pitching and flexible wings for mav applications. Acta Mech Sin 24(4):351–373

    Article  Google Scholar 

  97. Dai H, Luo H, de Sousa PJF, Doyle JF (2012) Thrust performance of a flexible low-aspect-ratio pitching plate. Phys Fluids 24(10):101903

    Article  Google Scholar 

  98. Fernandez-Feria R, Alaminos-Quesada J (2021) Propulsion and energy harvesting performances of a flexible thin airfoil undergoing forced heaving motion with passive pitching and deformation of small amplitude. J Fluids Struct 102:103255

    Article  Google Scholar 

  99. Patel A, Bhardwaj R (2022) Propulsive performance of a two-dimensional elliptic foil undergoing interlinked pitching and heaving. Phys Fluids 34:111904

    Article  CAS  Google Scholar 

  100. Quinn DB, Lauder GV, Smits AJ (2014) Scaling the propulsive performance of heaving flexible panels. J Fluid Mech 738:250–267

    Article  CAS  Google Scholar 

  101. Lagopoulos N, Weymouth G, Ganapathisubramani B (2019) Universal scaling law for drag-to-thrust wake transition in flapping foils. J Fluid Mech 872:1

    Article  Google Scholar 

  102. Sánchez-Rodríguez J, Raufaste C, Argentina M (2023) Scaling the tail beat frequency and swimming speed in underwater undulatory swimming. Nat Commun 14(1):5569

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pederzani J, Haj-Hariri H (2006) Numerical analysis of heaving flexible airfoils in a viscous flow. AIAA J 44(11):2773–2779

    Article  Google Scholar 

  104. Lai J, Platzer M (1999) Jet characteristics of a plunging airfoil. AIAA J 37(12):1529–1537

    Article  Google Scholar 

  105. Ashraf M, Young J, Lai J (2012) Oscillation frequency and amplitude effects on plunging airfoil propulsion and flow periodicity. AIAA J 50(11):2308–2324

    Article  Google Scholar 

  106. Martín-Alcántara A, Fernandez-Feria R, Sanmiguel-Rojas E (2015) Vortex flow structures and interactions for the optimum thrust efficiency of a heaving airfoil at different mean angles of attack. Phys Fluids 27(7):073602

    Article  Google Scholar 

  107. Young J, Lai JC (2004) Oscillation frequency and amplitude effects on the wake of a plunging airfoil. AIAA J 42(10):2042–2052

    Article  Google Scholar 

  108. Zhu Q (2007) Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J 45(10):2448–2457

    Article  Google Scholar 

  109. Yin B, Luo H (2010) Effect of wing inertia on hovering performance of flexible flapping wings. Phys Fluids 22(11):111902

    Article  Google Scholar 

  110. Wu TYT (1971) Hydromechanics of swimming propulsion. part 1. swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. Journal of Fluid Mechanics 46(2), 337–355

  111. Katz J, Weihs D (1979) Large amplitude unsteady motion of a flexible slender propulsor. J Fluid Mech 90(4):713–723

    Article  Google Scholar 

  112. Goza A, Floryan D, Rowley C (2020) Connections between resonance and nonlinearity in swimming performance of a flexible heaving plate. J. Fluid Mech. 888

  113. Shah CL, Majumdar D, Bose C, Sarkar S (2022) Chordwise flexible aft-tail suppresses jet-switching by reinstating wake periodicity in a flapping foil. J Fluid Mech 946:12

    Article  Google Scholar 

  114. Hover F, Haugsdal Ø, Triantafyllou M (2004) Effect of angle of attack profiles in flapping foil propulsion. J Fluids Struct 19(1):37–47

    Article  Google Scholar 

  115. Verma S, Hemmati A (2021) Evolution of wake structures behind oscillating hydrofoils with combined heaving and pitching motion. J Fluid Mech 927:23

    Article  Google Scholar 

  116. Verma S, Hemmati A (2022) Characterization of bifurcated dual vortex streets in the wake of an oscillating foil. J Fluid Mech 945:7

    Article  Google Scholar 

  117. Liu K, Liu X, Huang H (2022) Scaling the self-propulsive performance of pitching and heaving flexible plates. J Fluid Mech 936:9

    Article  Google Scholar 

  118. Young J, Lai JC, Platzer MF (2014) A review of progress and challenges in flapping foil power generation. Prog Aerosp Sci 67:2–28

    Article  Google Scholar 

  119. Xiao Q, Zhu Q (2014) A review on flow energy harvesters based on flapping foils. J Fluids Struct 46:174–191

    Article  Google Scholar 

  120. Zhu Q (2011) Optimal frequency for flow energy harvesting of a flapping foil. J Fluid Mech 675:495–517

    Article  CAS  Google Scholar 

  121. Zhu Q, Peng Z (2009) Mode coupling and flow energy harvesting by a flapping foil. Physics of Fluids 21(3)

  122. Peng Z, Zhu Q (2009) Energy harvesting through flow-induced oscillations of a foil. Physics of fluids 21(12)

  123. Wang Z, Du L, Zhao J, Sun X (2017) Structural response and energy extraction of a fully passive flapping foil. J Fluids Struct 72:96–113

    Article  Google Scholar 

  124. Qadri MM, Zhao F, Tang H (2020) Fluid-structure interaction of a fully passive flapping foil for flow energy extraction. Int J Mech Sci 177:105587

    Article  Google Scholar 

  125. Beal DN, Hover FS, Triantafyllou MS, Liao JC, Lauder GV (2006) Passive propulsion in vortex wakes. J Fluid Mech 549:385–402

    Article  Google Scholar 

  126. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) Fish exploiting vortices decrease muscle activity. Science 302(5650):1566–1569

    Article  CAS  PubMed  Google Scholar 

  127. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206(6):1059–1073

    Article  PubMed  Google Scholar 

  128. Duarte L, Dellinger N, Dellinger G, Ghenaim A, Terfous A (2019) Experimental investigation of the dynamic behaviour of a fully passive flapping foil hydrokinetic turbine. J Fluids Struct 88:1–12

    Article  Google Scholar 

  129. Boudreau M, Picard-Deland M, Dumas G (2020) A parametric study and optimization of the fully-passive flapping-foil turbine at high reynolds number. Renewable Energy 146:1958–1975

    Article  Google Scholar 

  130. Van Buren T, Floryan D, Smits AJ (2019) Scaling and performance of simultaneously heaving and pitching foils. AIAA J 57(9):3666–3677

    Article  Google Scholar 

  131. Isogai K, Shinmoto Y, Watanabe Y (1999) Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil. AIAA J 37(10):1145–1151

    Article  Google Scholar 

  132. Lentink D, Muijres FT, Donker-Duyvis FJ, Van Leeuwen JL (2008) Vortex-wake interactions of a flapping foil that models animal swimming and flight. J Exp Biol 211(2):267–273

    Article  PubMed  Google Scholar 

  133. Pedro G, Suleman A, Djilali N (2003) A numerical study of the propulsive efficiency of a flapping hydrofoil. Int J Numer Meth Fluids 42(5):493–526

    Article  Google Scholar 

  134. Webb PW (1975) Hydrodynamics and energetics of fish propulsion. Bull Fish Res Bd Can 190:1–159

    Google Scholar 

  135. Nauen JC, Lauder GV (2000) Locomotion in scombrid fishes: morphology and kinematics of the finlets of the chub mackerel scomber japonicus. J Exp Biol 203(15):2247–2259

    Article  CAS  PubMed  Google Scholar 

  136. Wang J, Wainwright DK, Lindengren RE, Lauder GV, Dong H (2020) Tuna locomotion: a computational hydrodynamic analysis of finlet function. J R Soc Interface 17(165):20190590

    Article  PubMed  PubMed Central  Google Scholar 

  137. Neogi I, Niral Shah V, Dev Singh P, Joshi V (2023) Propulsion of a combined heaving and trailing-edge morphing foil for bio-inspired applications. Physics of Fluids 35(4)

  138. Essapian FS (1955) Speed-induced skin folds in the bottle-nosed porpoise tursiops truncatus

  139. Dong G-J, Lu X-Y (2007) Characteristics of flow over traveling wavy foils in a side-by-side arrangement. Phys Fluids 19(5):057107

    Article  Google Scholar 

  140. Tytell ED (2004) The hydrodynamics of eel swimming ii. effect of swimming speed. Journal of experimental biology 207(19), 3265–3279

  141. Tian F-B, Dai H, Luo H, Doyle JF, Rousseau B (2014) Fluid-structure interaction involving large deformations: 3d simulations and applications to biological systems. J Comput Phys 258:451–469

    Article  CAS  Google Scholar 

  142. Tian F-B, Xu Y-Q, Tang X-Y, Deng Y-L (2013) Study on a self-propelled fish swimming in viscous fluid by a finite element method. Journal of Mechanics in Medicine and Biology 13(06):1340012

    Article  Google Scholar 

  143. Shukla S, Thekkethil N, Sharma A, Agrawal A, Bhardwaj R (2022) Hydrodynamics study on a traveling wave-based undulating surface of a hydrofoil in a free-stream flow. Phys. Rev. Fluids 7:084703

    Article  Google Scholar 

  144. Shukla S, Sharma A, Agrawal A, Bhardwaj R (2023) Flow over a hydrofoil subjected to traveling wave-based surface undulation: Effect of phase difference between surface waves and wave number. Theor. Comput. Fluid Dyn

  145. Ogunka U, Akbarzadeh A, Borazjani I (2021) The role of amplitude on controlling flow separation using traveling wave morphing. AIAA Scitech 2021

  146. Akbarzadeh AM, Borazjani I (2020) Controlling flow separation on a thick airfoil using backward traveling waves. AIAA J 58(9):3799–3807

    Article  CAS  Google Scholar 

  147. Akbarzadeh A, Borazjani I (2019) Reducing flow separation of an inclined plate via travelling waves. J Fluid Mech 880:831–863

    Article  CAS  Google Scholar 

  148. Khalid MSU, Wang J, Dong H, Liu M (2020) Flow transitions and mapping for undulating swimmers. Phys. Rev. Fluids 5:063104

    Article  Google Scholar 

  149. Chakravarty S, Samanta D (2021) Numerical simulation of a one-dimensional flexible filament mimicking anguilliform mode of swimming using discrete vortex method. Phys. Rev. Fluids 6:033102

    Article  Google Scholar 

  150. Hu Q-Q, Yu Y-L (2022) The hydrodynamic effects of undulating patterns on propulsion and braking performances of long-based fin. AIP Adv 12(3):035319

    Article  Google Scholar 

  151. Gupta S, Sharma A, Agrawal A, Thompson MC, Hourigan K (2021) Hydrodynamics of a fish-like body undulation mechanism: Scaling laws and regimes for vortex wake modes. Phys Fluids 33(10):101904

    Article  CAS  Google Scholar 

  152. Alaminos-Quesada J, Fernandez-Feria R (2020) Propulsion of a foil undergoing a flapping undulatory motion from the impulse theory in the linear potential limit. J Fluid Mech 883:19

    Article  Google Scholar 

  153. Thekkethil N, Sharma A, Agrawal A (2020) Self-propulsion of fishes-like undulating hydrofoil: A unified kinematics based unsteady hydrodynamics study. J Fluids Struct 93:102875

    Article  Google Scholar 

  154. Zhou Z, Mittal R (2018) Swimming performance and unique wake topology of the sea hare (aplysia). Phys. Rev. Fluids 3:033102

    Article  Google Scholar 

  155. Chuijie W, Yanqiong X, Jiezhi W (2003) “fluid roller bearing’’ effect and flow control. Acta Mech Sin 19(5):476–484

    Article  Google Scholar 

  156. Borazjani I, Sotiropoulos F (2008) Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes. J Exp Biol 211(10):1541–1558

    Article  PubMed  Google Scholar 

  157. Borazjani I, Sotiropoulos F (2010) On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming. J Exp Biol 213(1):89–107

    Article  CAS  PubMed  Google Scholar 

  158. Gupta S, Agrawal A, Hourigan K, Thompson MC, Sharma A (2022) Anguilliform and carangiform fish-inspired hydrodynamic study for an undulating hydrofoil: Effect of shape and adaptive kinematics. Physical Review Fluids 7(9):094102

    Article  Google Scholar 

  159. Ebrahimi M, Abbaspour M, et al (2015) A comparative numerical study on the performances and vortical patterns of two bioinspired oscillatory mechanisms: undulating and pure heaving. Applied Bionics and Biomechanics 2015

  160. Sooraj P, Agrawal A (2019) Passive flow control mechanism in a bio-inspired corrugated hydrofoil. SN Applied Sciences 1(11):1–17

    Article  Google Scholar 

  161. Sooraj P, Sharma A, Agrawal A (2020) Dynamics of co-rotating vortices in a flow around a bio-inspired corrugated airfoil. Int J Heat Fluid Flow 84:108603

    Article  Google Scholar 

  162. Chan AS, Dewey PA, Jameson A, Liang C, Smits AJ (2011) Vortex suppression and drag reduction in the wake of counter-rotating cylinders. J Fluid Mech 679:343–382

    Article  Google Scholar 

  163. Wu C-J, Wang L, Wu J-Z (2007) Suppression of the von kármán vortex street behind a circular cylinder by a travelling wave generated by a flexible surface. J Fluid Mech 574:365–391

    Article  Google Scholar 

  164. Xu F, Chen W-L, Bai W-F, Xiao Y-Q, Ou J-P (2017) Flow control of the wake vortex street of a circular cylinder by using a traveling wave wall at low reynolds number. Computers & Fluids 145:52–67

    Article  CAS  Google Scholar 

  165. Thompson E, Goza A (2022) Surface morphing for aerodynamic flows at low and stalled angles of attack. Physical Review Fluids 7(2):024703

    Article  Google Scholar 

  166. Albers M, Schröder W (2021) Lower drag and higher lift for turbulent airfoil flow by moving surfaces. Int J Heat Fluid Flow 88:108770

    Article  Google Scholar 

  167. He X, Guo Q, Xu Y, Feng L, Wang J (2023) Aerodynamics and fluid-structure interaction of an airfoil with actively controlled flexible leeward surface. J Fluid Mech 954:34

    Article  Google Scholar 

  168. Huang G, Dai Y, Yang C, Xia Y (2022) Mitigation of laminar separation flutter using active oscillation of local surface. Phys Fluids 34(6):063602

    Article  CAS  Google Scholar 

  169. Tian F-B, Lu X-Y, Luo H (2012) Propulsive performance of a body with a traveling-wave surface. Phys Rev E 86(1):016304

    Article  Google Scholar 

  170. Müller U, Van Den Heuvel B, Stamhuis E, Videler J (1997) Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (chelon labrosus risso). J Exp Biol 200(22):2893–2906

    Article  Google Scholar 

  171. Massey JMO, Ganapathisubramani B, Weymouth GD (2023) A systematic investigation into the effect of roughness on self-propelled swimming plates. J Fluid Mech 971:39

    Article  Google Scholar 

  172. Senturk U, Smits AJ (2019) Reynolds number scaling of the propulsive performance of a pitching airfoil. AIAA J 57(7):2663–2669

    Article  Google Scholar 

  173. Deng J, Sun L, Teng L, Pan D, Shao X (2016) The correlation between wake transition and propulsive efficiency of a flapping foil: A numerical study. Physics of Fluids 28(9)

  174. Alam MM, Muhammad Z (2020) Dynamics of flow around a pitching hydrofoil. J Fluids Struct 99:103151

    Article  Google Scholar 

  175. Camacho E, Neves F, Silva A, Barata J (2020) Numerical investigation of frequency and amplitude influence on a plunging naca0012. Energies 13(8):1861

    Article  Google Scholar 

  176. Tuncer I, Walz R, Platzer M (1998) A computational study on the dynamic stall of a flapping airfoil. In: 16th AIAA Applied Aerodynamics Conference, p. 2519

  177. Shukla S, Sharma S, Agrawal A, Bhardwaj R (2024) Hydrodynamics and propulsion of a hydrofoil undergoing leading-edge pitching and traveling wave-based surface undulation. Phys. Fluids 36(4):043605. https://doi.org/10.1063/5.0196237

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Bhardwaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S., Sharma, A., Agrawal, A. et al. Fish-Inspired Oscillating and/or Undulating Hydrofoil in a Free Stream Flow: A Review on Thrust Generation Mechanisms. J Indian Inst Sci (2024). https://doi.org/10.1007/s41745-024-00426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41745-024-00426-8

Keywords

Navigation