Skip to main content
Log in

The effect of aneurismal-wall mechanical properties on patient-specific hemodynamic simulations: two clinical case reports

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Hemodynamic factors such as the wall shear stress play an important role in the pathogenesis and treatment of cerebral aneurysms. In present study, we apply computational fluid–structure interaction analyses on cerebral aneurysms with two different constitutive relations for aneurismal wall in order to investigate the effect of the aneurismal wall mechanical properties on the simulation results. We carry out these analyses by using two patient-specific models of cerebral aneurysms of different sizes located in different branches of the circle of Willis. The models are constructed from 3D rotational angiography image data and blood flow dynamics is studied under physiologically representative waveform of inflow. From the patient models analyzed in this investigation, we find that the deformations of cerebral aneurysms are very small. But due to the nonlinear character of the Navier–Stokes equations, these small deformations could have significant influences on the flow characteristics. In addition, we find that the aneurismal-wall mechanical properties have great effects on the deformation distribution of the aneurysm, which also affects the wall shear stress distribution and flow patterns. Therefore, how to define a proper constitutive relation for aneurismal wall should be considered carefully in the hemodynamic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lasheras J.C.: The biomechanics of arterial aneurysms. Annu. Rev. Fluid Mech. 39, 293–319 (2007)

    Article  MathSciNet  Google Scholar 

  2. Valencia A., Botto S., Sordo J., Galvez M., Badilla L.: Comparison of haemodynamics in cerebral aneurysms of different sizes located in the ophthalmic artery. Int. J. Numer. Meth. Fluids 53, 793–809 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Komatsu Y., Yasuda S., Shibata T., Ono Y., Hyodo A., Nose T.: Management for subarachnoid hemorrhage with negative initialangiography. Neurol. Surg. 22, 43–49 (1994)

    Google Scholar 

  4. Winn H.R., Jane J.A., Taylor J., Kaiser D., Britz G.W.: Prevalence of asymptomatic incidental aneurysms: review of 4568 arteriograms. J. Neurosurg. 96, 43–49 (2002)

    Article  Google Scholar 

  5. De Rooij N.K., Linn F.H.H., Vanderplas J.A., Algra A., Rinkel G.J.E.: Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J. Neurol. Neurosurg. Psychiatry 78, 1365–1374 (2007)

    Article  Google Scholar 

  6. Tomasello F., D’Avella D., Salpietro F.M., Longo M.: Asymptomatic aneurysms: literature meta-analysis and indications for treatment. J. Neurosurg. Sci. 42, 47–51 (1998)

    Google Scholar 

  7. Murayama Y., Nien Y.L., Duckwiler G., Gobin Y.P., Jahan R., Frazee J., Martin N., Vinuela F.: Guglielmi detachable coil embolization of cerebral aneurysms: II. Experience. J. Neurosurg. 98(5), 947–959 (2003)

    Google Scholar 

  8. Chen P.R., Frerichs K., Spetzler R.: Current treatment options for unruptured intracranial aneurysms. Neurosurg. Focus 17(5), 1–6 (2004)

    MATH  Google Scholar 

  9. Qin K.R., Xu Z., Wu H., Jiang Z.L., Liu Z.R.: Synergy of wall shear stress and circumferential stress in straight arteries. J. Hydrodyn. Ser. B 17(6), 752–757 (2005)

    Google Scholar 

  10. Qin K.R., Jiang Z.L., Sun H., Gong K.Q., Liu Z.R.: A multiscale model for analyzing the synergy of CS and WSS on the endothelium in straight arteries. Acta Mech. Sin. 22, 76–83 (2006)

    Article  Google Scholar 

  11. Castro M.A., Putman C.M., Cebral J.R.: Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics. Am. J. Neuroradiol. 27, 1703–1709 (2006)

    Google Scholar 

  12. Valencia A., Zarate A., Galvez M., Badilla L.: Non-Newtonian blood flow dynamics in a right internal carotid artery with a saccular aneurysm. Int. J. Numer. Methods Fluids 50, 751–764 (2006)

    Article  MATH  Google Scholar 

  13. Zhang X.W., Yao Z.H., Zhang Y., Xu S.D.: Experimental and computational studies on the flow fields in aortic aneurysms associated with deployment of AAA stent-grafts. Acta Mech. Sin. 23, 495–501 (2007)

    Article  Google Scholar 

  14. Cebral J.R., Castro M.A., Appanaboyina S., Putman C.M., Millan D., Frangi A.F.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24, 457–467 (2005)

    Article  Google Scholar 

  15. Zhao J.W., Yin W.Y., Ding G.H., Yang X.J., Shi W.Z., Zhang X.L.: Numerical simulation and analysis on the hemodynamics of an elastic aneurysm. J. Hydrodyn. Ser. B 02(6), 216–224 (2008)

    Article  Google Scholar 

  16. Torii R., Oshima M., Kobayashi T., Takagi K., Tezduyar T.E.: Fluid–structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput. Mech. 38, 482–490 (2006)

    Article  MATH  Google Scholar 

  17. Torii R., Oshima M., Kobayashi T., Takagi K., Tezduyar T.E.: Influence of wall elasticity in patient-specific hemodynamic simulations. Comp. Fluids 36, 160–168 (2007)

    Article  MATH  Google Scholar 

  18. Torii R., Oshima M., Kobayashi T., Takagi K., Tezduyar T.E.: Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput. Method Appl. Mech. Eng. 195, 1885–1895 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Scotti C.M., Finol E.A.: Compliant biomechanics of abdominal aortic aneurysms: a fluid–structure interaction study. Comp. Fluids 85, 1097–1113 (2007)

    Google Scholar 

  20. Seshaiyer P., Hsu F.P.K., Shah A.D., Kyriacou S.K., Humphrey J.D.: Multiaxial mechanical behavior of human saccular aneurysms. Comp. Methods Biomech. Biomed. Eng. 4, 281–289 (2001)

    Article  Google Scholar 

  21. Hassan T., Timofeev E., Saito T., Shimizu H., Ezura M., Tominaga T., Takahashi A., Takayama K.: Computational replicas: anatomic reconstructions of cerebral vessels as volume numerical grids at three-dimensional angiography. Am. J. Neuroradiol. 25, 1356–1365 (2004)

    Google Scholar 

  22. Tateshima S., Murayama Y., Villablanca J.P., Morino T., Nomura K., Tanishita K., Vinuela F.: In vitro measurement of fluid induced wall shear stress in unruptured cerebral aneurysms harboring blebs. Stroke 34, 187–192 (2003)

    Article  Google Scholar 

  23. Tateshima S., Tanishita K., Omura H., Villablanca J.P., Vinuela F.: Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal CT angiogram database. Am. J. Neuroradiol. 28, 622–627 (2007)

    Google Scholar 

  24. Wetzel S., Meckel S., Frydrychowicz A., Bonati L., Radue E.W., Scheffler K., Hennig J., Markl M.: In vivo assessment and visualization of intracranial arterial hemodynamics with flow-sensitized 4D MR imaging at 3T. Am. J. Neuroradiol. 28, 433–438 (2007)

    Google Scholar 

  25. Shojima M., Oshima M., Takagi K., Torii R., Hayakawa M., Katada K., Morita A., Kirino T.: Magnitude and role of wall shear stress on cerebral aneurysm computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35, 2500–2505 (2004)

    Article  Google Scholar 

  26. Imai Y., Sato K., Ishikawa T., Yamaguchi T.: Inflow into saccular cerebral aneurysms at arterial bends. Ann. Biomed. Eng. 36, 1489–1495 (2008)

    Article  Google Scholar 

  27. Ford M.D., Lee S.W., Lownie S.P., Holdsworth D.W., Steinman D.A.: On the effect of parents-aneurysm angle on flow patterns in basilar tip aneurysms: towards a surrogate geometric marker of intra-aneurismal hemodynamics. J. Biomech. 41, 241–248 (2008)

    Article  Google Scholar 

  28. Cebral J.R., Castro M.A., Burgess J.E., Pergolizzi R.S., Sheridan M.J., Putman C.M.: Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26, 2550–2559 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghong Ding.

Additional information

The project supported by the National Natural Science Foundation of China (30772234), Shanghai Municipal Natural Science Foundation (08ZR1401000) and Shanghai Leading Academic Discipline Project (B112).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Wang, S., Ding, G. et al. The effect of aneurismal-wall mechanical properties on patient-specific hemodynamic simulations: two clinical case reports. Acta Mech Sin 25, 677–688 (2009). https://doi.org/10.1007/s10409-009-0262-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-009-0262-6

Keywords

Navigation