Skip to main content
Log in

Single-pulse dynamics and flow rates of inertial micropumps

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Bubble-driven inertial pumps are a novel method of moving liquids through microchannels. We combine high-speed imaging, computational fluid dynamics (CFD) simulations, and an effective one-dimensional model to study the fundamentals of inertial pumping. For the first time, single-pulse transient flow through U-shaped microchannels is imaged over the entire pump cycle with 4 \(\upmu\)s temporal resolution. Observations confirm the fundamental N-shaped flow profile predicted earlier by theory and simulations. Experimental flow rates are used to calibrate the CFD and one-dimensional models to extract an effective bubble strength. Then, the frequency dependence of inertial pumping is studied both experimentally and numerically. The pump efficiency is found to gradually decrease once the successive pulses start to overlap in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bandopadhyay A, Ghosh U, Pal D, Chaudhury K, Chakraborty S (2014) Electrokinetic maneuvering of bubble-driven inertial micro-pumping systems. Int J Micro–Nano Scale Transp 5:13–21

    Article  Google Scholar 

  • Bezuglyi BA, Ivanova NA (2007) Pumping of a fluid through a microchannel by means of a bubble driven by a light beam. Fluid Dynamics 42:91–96

    Article  Google Scholar 

  • Garimella S, Singhal V, Liu D (2006) On-chip thermal management with microchannel heat sinks and integrated micropumps. Proc IEEE 94:1534–1548

    Article  Google Scholar 

  • Geng X, Yuan H, Og̃uz HN, Prosperetti A, (2001) Bubble-based micropump for electrically conducting liquids. J Micromech Microeng 11:270–276

  • Glod S, Poulikakos D, Zhao Z, Yadigaroglu G (2002) An investigation of microscale explosive vaporization of water on an ultrathin Pt wire. Int J Heat and Mass Transfer 45:367–379

    Article  Google Scholar 

  • Hua T, Torniainen ED, Markel DP, Browning RNK (2015) Numerical simulation of droplet ejection of thermal inkjet printheads. Int J Numer Meth Fluids 77:544–570

    Article  Google Scholar 

  • Jun TK, Kim CJ (1998) Valveless pumping using traversing vapor bubbles in microchannels. J Appl Phys 83:5658–5664

    Article  Google Scholar 

  • Jung JY, Kwak HY (2007) Fabrication and testing of bubble powered micropumps using embedded microheater. Microfluid Nanofluid 3:161–169

    Article  Google Scholar 

  • Kandlikar SG (2006) Flow boiling in minichannels and microchannels. In: Heat Transfer and Fluid Flow in Minichannels and Microchannels by Kandlikar SG, Garimella S, Li Dongqing, Colin S, King MR (Elsevier Ltd, 2006):175–226

  • Kornilovitch PE, Govyadinov AN, Markel DP, Torniainen ED (2013) One-dimensional model of inertial pumping. Phys Rev E 87:023012

    Article  Google Scholar 

  • Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14:R35–R64

    Article  Google Scholar 

  • Lee C-Y, Chang C-L, Wang Y-N, Lung-Ming F (2011) Microfluidic mixing: A review. Int J Mol Sci 12:3263–3287

    Article  Google Scholar 

  • Mohammadi M, Sharp KV (2013) Experimental techniques for bubble dynamics analysis in microchannels: a review. J Fluids Eng 135:021202

    Article  Google Scholar 

  • Nabavi M (2009) Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review. Microfluid Nanofluid 7:599–619

    Article  Google Scholar 

  • Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:R13–R29

    Article  Google Scholar 

  • Okuyama K, Takehara R, Iida Y, Kim JH (2005) Pumping action by boiling propagation in a microchannel. Microscale Thermophys Eng 9:119–135

    Article  Google Scholar 

  • Ory E, Yuan H, Prosperetti A, Popinet S, Zaleski S (2000) Growth and collapse of a vapor bubble in a narrow tube. Phys Fluids 12:1268–1277

    Article  MATH  Google Scholar 

  • Ozaki K (1995) Pumping mechanism using periodic phase changes of a fluid. In: Proceedings of the IEEE micro electro mechanical system (Piscataway, NJ: IEEE) 95CH35754:3136

  • Song YJ, Zhao TS (2001) Modelling and test of a thermally-driven phase-change nonmechanical micropump. J Micromech Microeng 11:713–719

    Article  Google Scholar 

  • Stasiak J, Richards S, Benning P (2012) Hewlett–Packard’s MEMS technology: thermal inkjet printing. In: Anupama BK et al (eds) Microelectronics to nanoelectronics: materials, devices and manufacturability. CRC press, USA, pp 61–78

    Chapter  Google Scholar 

  • Sun C, Can E, Dijkink R, Lohse D, Prosperetti A (2009) Growth and collapse of a vapour bubble in a microtube: the role of thermal effects. J Fluid Mech 632:5–16

    Article  MATH  Google Scholar 

  • Takagi H, Meada R, Ozaki K, Parameswaran M, Mehta M (1994) Phase transformation type micro pump. In: Proceedings of the international symposium on micro machine and human science (Piscataway, NJ: IEEE) 94TH0707–0:199202

  • Timoshenko SP, Goodier JN (1970) Theory of elasticity, 3rd edn. McGraw Hill, New York, p 310

    MATH  Google Scholar 

  • Torniainen ED, Govyadinov AN, Markel DP, Kornilovitch PE (2012) Bubble-driven inertial micropump. Phys Fluids 24:122003

    Article  Google Scholar 

  • Tsai JH, Lin L (2002) A thermal-bubble-actuated micronozzle-diffuser pump. J Microelectromech Syst 11:665–671

    Article  Google Scholar 

  • Versluis M (2013) High-speed imaging in fluids. Exp Fluids 54:1458

    Article  Google Scholar 

  • Wang GR, Santiago JG, Mungal MG, Young B, Papademetriou S (2004) A laser induced cavitation pump. J Micromech Microeng 14:1037–1046

    Article  Google Scholar 

  • Yin Z, Prosperetti A (2005) A microfluidic “blinking bubble” pump. J Micromech Microeng 15:643–651

    Article  Google Scholar 

  • Yokoyama Y, Takeda M, Umemoto T, Ogushi T (2004) Thermal micro pumps for a loop-type micro channel. Sensor Actuators A 111:123–128

    Article  Google Scholar 

  • Yuan H, Prosperetti A (1999) The pumping effect of growing and collapsing bubbles in a tube. J Micromech Microeng 9:402

    Article  Google Scholar 

  • Zhao Z, Glod S, Poulikakos D (2000) Pressure and power generation during explosive vaporization on a thin-film microheater. Int J Heat and Mass Transfer 43:281–296

    Article  Google Scholar 

  • Zou J, Li B, Ji C (2015) Interactions between two oscillating bubbles in a rigid tube. Exp Therm Fluid Sci 61:105–112

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank T. Deskins and M. Brown for high-speed videos; K. Vandehey, M. Monroe, M. Regan, C. Macleod, T. Mattoon, and P. Stevenson for general support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Govyadinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govyadinov, A.N., Kornilovitch, P.E., Markel, D.P. et al. Single-pulse dynamics and flow rates of inertial micropumps. Microfluid Nanofluid 20, 73 (2016). https://doi.org/10.1007/s10404-016-1738-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-016-1738-x

Keywords

Navigation