Skip to main content
Log in

Reversible stretching of pre-strained water-filled carbon nanotubes under electric fields

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

As a two-phase structure, the water-filled carbon nanotubes (CNTs) have been successfully observed and separated in laboratory, which provide an ideal choice for functional building blocks at nanoscale. In this paper, the controllable stretching of the water-filled CNTs with a pre-strain under electric fields is investigated by molecular dynamics simulations. The simulation results reveal that the stretching of straight water-filled CNTs slightly, but that of collapsed water-filled CNTs obviously, increases with the increase in the electric field intensity. At the similar level of pre-strain, the increase in the water filling density can promote the stretching of collapsed water-filled CNTs. As the pre-strain increases, a decrease can be found in the stretching of the collapsed water-filled CNTs with the same filling density. Moreover, the pre-strained water-filled CNTs can make a rapid and reversible response to the external electric field. The distributions of the dipole orientations of water molecules along the CNTs are utilized to elucidate the stretching mechanism. Our findings provide a feasible route for the design and fabrication of nanoscale switch and controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Mat 14:783–802

    Article  Google Scholar 

  • Cambré S, Wenseleers W (2011) Separation and diameter-sorting of empty (end-capped) and water-filled (open) carbon nanotubes by density gradient ultracentrifugation. Angew Chem Int Ed 50:2764–2768

    Article  Google Scholar 

  • Cambré S, Schoeters B, Luyckx S, Goovaerts E, Wenseleers W (2010) Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5, 3). Phys Rev Lett 104:207401

    Article  Google Scholar 

  • Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53

    Article  Google Scholar 

  • Chaban VV, Prezhdo OV (2011) Water boiling inside carbon nanotubes: toward efficient drug release. ACS Nano 5:5647–5655

    Article  Google Scholar 

  • Chiashi S, Hanashima T, Mitobe R, Nagatsu K, Yamamoto T, Homma Y (2014) Water encapsulation control in individual single-walled carbon nanotubes by laser irradiation. J Phys Chem Lett 5:408–412

    Article  Google Scholar 

  • Deshpande VV, Chiu HY, Postma HWC, Mikó C, Forró L, Bockrath M (2006) Carbon nanotube linear bearing nanoswitches. Nano Lett 6:1092–1095

    Article  Google Scholar 

  • Dong LX, Subramanian A, Nelson BJ (2007) Carbon nanotubes for nanorobotics. Nanotoday 2:12–21

    Article  Google Scholar 

  • Duan WH, Wang Q (2010) Water transport with a carbon nanotube pump. ACS Nano 4:2338–2344

    Article  MathSciNet  Google Scholar 

  • Fagan JA, Huh JY, Simpson JR, Blackburn JL, Holt JM, Larsen BA, Walker AR (2011) Separation of empty and water-filled single-wall carbon nanotubes. ACS Nano 5:3943–3953

    Article  Google Scholar 

  • Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584

    Article  Google Scholar 

  • Fu ZM, Luo Y, Ma JP, Wei GH (2011) Phase transition of nanotube-confined water driven by electric field. J Chem Phys 134:154507

    Article  Google Scholar 

  • Hans WH, William CS, Jed WP, Jeffry DM, Thomas JD, Greg LH, Teresa HG (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-EW. J Chem Phys 120:9665–9678

    Article  Google Scholar 

  • He ZJ, Zhou J, Lu XH, Corry B (2013) Ice-like water structure in carbon nanotube (8, 8) induces cationic hydration enhancement. J Phys Chem C 117:11412–11420

    Article  Google Scholar 

  • Hughes ZE, Shearer CJ, Shapter J, Gale JD (2012) Simulation of water transport through functionalized single-walled carbon nanotubes (SWCNTs). J Phys Chem C 116:24943–24953

    Article  Google Scholar 

  • Hummer G, Rasaiah JC, Noworyta JP (2001) Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–190

    Article  Google Scholar 

  • Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104:2089

    Article  Google Scholar 

  • Li YX, Xu JL, Li DQ (2010) Molecular dynamics simulation of nanoscale liquid flows. Microfluid Nanofluid 9:1011–1031

    Article  Google Scholar 

  • Mattia D, Gogotsi Y (2008) Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid 5:289–305

    Article  Google Scholar 

  • Moulin F, Devel M, Picaud S (2005) Molecular dynamics simulations of polarizable nanotubes interacting with water. Phys Rev B 71:165401

    Article  Google Scholar 

  • Naguib N, Ye HH, Gogotsi Y, Yazicioglu AG, Megaridis CM, Yoshimura M (2004) Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Lett 4:2237–2243

    Article  Google Scholar 

  • Paineau E, Albouy PA, Rouzière S, Orecchini A, Rols S, Launois P (2013) X-ray scattering determination of the structure of water during carbon nanotube filling. Nano Lett 13:1751–1756

    Google Scholar 

  • Rinne KF, Gekle S, Bonthuis DJ, Netz RR (2012) Nanoscale pumping of water by AC electric fields. Nano Lett 12:1780–1783

    Article  Google Scholar 

  • Sani A, Darbari S, Abdi Y, Arzi E (2012) Using bent carbon nanotubes for the fabrication of electromechanical switches. Carbon 50:3635–3640

    Article  Google Scholar 

  • Steve P (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  • Svishchev IM, Kusalik PG (1994) Crystallization of liquid water in a molecular dynamics simulation. Phys Rev Lett 73:975–978

    Article  Google Scholar 

  • Vaitheeswaran S, Rasaiah JC, Hummer G (2004) Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes. J Chem Phys 121:7955–7965

    Article  Google Scholar 

  • Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301

    Article  Google Scholar 

  • Ye HF, Zhang ZQ, Zhang HW, Chen Z, Zong Z, Zheng YG (2014) The tunable mechanical property of the water-filled carbon nanotubes under an electric field. J Phys D Appl Phys 47:125302

    Article  Google Scholar 

  • Yuan QZ, Zhao YP (2009) Hydroelectric Voltage Generation Based on Water-Filled Single-Walled Carbon Nanotubes. J Am Chem Soc 131:6374–6376

    Article  Google Scholar 

  • Yuan QZ, Zhao YP (2012) Topology-dominated dynamic wetting of the precursor chain in a hydrophilic interior corner. Proc R Soc A 468:310–322

    Article  Google Scholar 

  • Yun YH, Dong ZY, Shanov V, Heineman WR, Halsall HB, Bhattacharya A, Conforti L, Narayan RK, Ball WS, Schulz MJ (2007) Nanotube electrodes and biosensors. Nanotoday 2:30–37

    Article  Google Scholar 

  • Zhang HW, Ye HF, Zheng YG, Zhang ZQ (2011) Prediction of the viscosity of water confined in carbon nanotubes. Microfluid Nanofluid 10:403–414

    Article  Google Scholar 

  • Zheng YG, Ye HF, Zhang ZQ, Zhang HW (2012) Water diffusion inside carbon nanotubes: mutual effects of surface and confinement. Phys Chem Chem Phys 14:964–971

    Article  Google Scholar 

  • Zhu XY, Yuan QZ, Zhao YP (2014) Phase transitions of a water overlayer on charged graphene: from electromelting to electrofreezing. Nanoscale 6(10):5432–5437

    Article  Google Scholar 

  • Zuo GZ, Shen R, Ma SJ, Guo WL (2010) Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel. ACS Nano 4:205–210

    Article  Google Scholar 

Download references

Acknowledgments

The supports of the National Natural Science Foundation of China (Nos. 11302037, 11272003, 91315302, 11232003 and 11472117), the 111 Project (No. B08014), the China Postdoctoral Science Foundation (Nos. 2013M530909 and 2013T60503), the Program for New Century Excellent Talents in University (NCET-13-0088), and the Fundamental Research Funds for the Central Universities are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H.F., Zhang, H.W., Chen, Z. et al. Reversible stretching of pre-strained water-filled carbon nanotubes under electric fields. Microfluid Nanofluid 18, 1201–1207 (2015). https://doi.org/10.1007/s10404-014-1515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1515-7

Keywords

Navigation