Skip to main content
Log in

An artificial neural network-based multiscale method for hybrid atomistic-continuum simulations

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper presents an artificial neural network-based multiscale method for coupling continuum and molecular simulations. Molecular dynamics modelling is employed as a local “high resolution” refinement of computational data required by the continuum computational fluid dynamics solver. The coupling between atomistic and continuum simulations is obtained by an artificial neural network (ANN) methodology. The ANN aims to optimise the transfer of information through minimisation of (1) the computational cost by avoiding repetitive atomistic simulations of nearly identical states, and (2) the fluctuation strength of the atomistic outputs that are fed back to the continuum solver. Results are presented for prototype flows such as the isothermal Couette flow with slip boundary conditions and the slip Couette flow with heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allen M P, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford

  • Asproulis N, Drikakis D (2010) Boundary slip dependency on surface stiffness. Phys Rev E 81(6)

  • Asproulis N, Drikakis D (2009) Nanoscale materials modelling using neural networks. J Comput Theo Nano Sci 6(3):514–518

    Article  Google Scholar 

  • Asproulis N, Drikakis D (2010) Surface roughness effects in micro and nanofluidic devices. J Comput Theo Nano Sci 7(9):1825–1830

    Article  Google Scholar 

  • Asproulis N, Drikakis D (2011) Wall-mass effects on hydrodynamic boundary slip. Phys Rev E 84:031504

    Article  Google Scholar 

  • Asproulis N, Kalweit M, Shapiro E, Drikakis D (2009) Mesoscale flow and heat transfer modelling and its application to liquid and gas flows. J Nanophotonics 3(1):031960–031975

    Article  Google Scholar 

  • Asproulis N, Kalweit M, Drikakis D (2012) A hybrid molecular continuum method using point wise coupling. Adv Eng Softw 46(1):85–92

    Article  Google Scholar 

  • Ben Krose, Patrik van de Smagt (1996) An introduction to artificial neural networks. The University of Amsterdam, Amsterdam

  • Benardos PG, Vosniakos G (2007) Optimizing feedforward artificial neural network architecture. Eng Appl Artif Intell 20(3):365–382

    Article  Google Scholar 

  • Borg MK, MacPherson GB, Reese JM (2010) Controllers for imposing continuum-to-molecular boundary conditions in arbitrary fluid flow geometries. Mol Simul 36(10):745–757

    Article  Google Scholar 

  • Bugel M, Galliéro G, Caltagirone J (2011) Hybrid atomistic-continuum simulations of fluid flows involving interfaces. Microfluid Nanofluid 10(3):637–647

    Article  Google Scholar 

  • De Fabritiis G, Delgado-Buscalioni R, Coveney PV (2006) Modelling the mesoscale with molecular specificity. Phys Rev Lett 97:134501

    Article  Google Scholar 

  • Delgado-Buscalioni R (2012) Tools for multiscale simulation of liquids using open molecular dynamics. Numerical analysis and multiscale computations, series lecture notes computational science and engineering 82:145–166

  • Delgado-Buscalioni R, Coveney VP (2003) Continuum-particle hybrid coupling for mass, momentum and energy transfers. Phys Rev E 67:046704

    Article  Google Scholar 

  • Delgado-Buscalioni R, Coveney PV (2003) Usher: an algorithm for particle insertion in dense fluids. J Chem Phys 119:978–987

    Article  Google Scholar 

  • Delgado-Buscalioni R, Coveney P (2004) Hybrid molecular-continuum fluid dynamics. Phil Trans R Soc Lond A 362:1639–1654

    Article  MathSciNet  MATH  Google Scholar 

  • Delgado-Buscalioni R, Kremer K, Praprotnik M (2008) Concurrent triple-scale simulation of molecular liquids. J Chem Phys 128(11)

  • Delgado-Buscalioni R, Kremer K, Praprotnik M (2009) Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water. J Chem Phys 131(24)

  • Drikakis D, Asproulis N (2010) Multi-scale computational modelling of flow and heat transfer. Int J Numer Meth Heat Fluid Flow 20(5)

  • Drikakis D, Rider W (2004) High-resolution methods for Incompressible and low-speed flows. Springer, Ney york

  • Drikakis D, Govatsos PA, Papantonis DE (1994) A characteristic-based method for incompressible flows. Int J Num Meth Fl 19:667–685

    Article  MathSciNet  MATH  Google Scholar 

  • Drikakis D, Iliev OP, Vassileva DP (2000) Acceleration of multigrid flow computations through dynamic adaptation of the smoothing procedure. J Comput Phys 165(2):566–591

    Article  MATH  Google Scholar 

  • Fedosov AD, Karniadakis EG (2009) Triple-decker: interfacing atomistic-mesoscopic-continuum flow regimes. J Comput Phys 228(4):1157–1171

    Article  MathSciNet  MATH  Google Scholar 

  • Flekkoy GE, Delgado-Buscalioni R, Coveney VP (2005) Flux boundary conditions in particle simulations. Phys Rev E 72(2):1–9

    Google Scholar 

  • Gad-El-Hak M (2005) Liquids: The holy grail of microfluidic modeling. Phys Fluids 17:100612

    Article  Google Scholar 

  • Gad-El-Hak M (2006) Gas and liquid transport at the microscale. Heat Tran Eng 27(4):13–29

    Article  Google Scholar 

  • Garcia AL, Alder BJ (1998) Generation of the chapman-enskog distribution. J Comput Phys 140(1):66–70

    Article  MathSciNet  MATH  Google Scholar 

  • Garcia-Cervera CJ, Ren W, Lu J, Weinan E (2008) Sequential multiscale modeling using sparse representation. Comm Comp Phys 4(5):1025–1033

    Google Scholar 

  • Giannakopoulos AE, Sofos F, Karakasidis TE, Liakopoulos A (2012) Unified description of size effects of transport properties of liquids flowing in nanochannels. Int J Heat Mass Tran 55(19–20):5087–5092

    Article  Google Scholar 

  • Hadjiconstantinou NG (2006) The limits of navier-stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys Fluids 18(11)

  • Hadjiconstantinou NG (1999) Hybrid atomistic-continuum formulations and the moving contact-line problem. J Comput Phys 154(2):245–265

    Article  MATH  Google Scholar 

  • Hadjiconstantinou NG (1999) Combining atomistic and continuum simulations of contact-line motion. Phys Rev E 59:2475

    Article  Google Scholar 

  • Hadjiconstantinou NG (2005) Discussion of recent developments in hybrid atomistic-continuum methods for multiscale hydrodynamics. Bull Pol Acad Sci: Tech Sci 53(4):335–342

    MATH  Google Scholar 

  • Hadjiconstantinou NG, Patera AT (1997) Heterogeneous atomistic-continuum representations for dense fluid systems. Int J Mod Phys C 8(4):967–976

    Article  Google Scholar 

  • Huang C, Chen L, Chen Y, Chang FM (2009) Evaluating the process of a genetic algorithm to improve the back-propagation network: a monte carlo study. Exp Syst Appl 36(2):1459–1465

    Article  Google Scholar 

  • Kalweit M, Drikakis D (2008) Coupling strategies for hybrid molecularcontinuum simulation methods. Proceedings of the I Mech Eng Part C J Mech Eng Sci 222:797–806(10)

  • Kalweit M, Drikakis D (2008) Multiscale methods for micro/nano flows and materials. J Comput Theo Nano Sci 5(9):1923–1938

    Article  Google Scholar 

  • Kamholz AE, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the t-sensor. An Chem 71(23):5340–5347

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York

  • Kevrekidis IG, Gear CW, Hummer G (2004) Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J 50(7):1346–1355

    Article  Google Scholar 

  • Koishi T, Yasuoka K, Ebisuzaki T, Yoo S, Zeng XC (2005) Large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction and nanobubble formation. J Chem Phys 123(20)

  • Kotsalis EM, Walther JH, Koumoutsakos P (2007) Control of density fluctuations in atomistic-continuum simulations of dense liquids. Phys Rev E 76(1)

  • Kotsalis EM, Walther JH, Kaxiras E, Koumoutsakos P (2009) Control algorithm for multiscale flow simulations of water. Phys Rev E 79(4)

  • Koumoutsakos P (2005) Multiscale flow simulations using particles. Ann Rev Fluid Mech 37:457–487

    Article  MathSciNet  Google Scholar 

  • Laurene V Fausett (1994) Fundamentals of neural networks. Prentice Hall, New York

  • Lei H, Caswell B, Karniadakis GE (2010) Direct construction of mesoscopic models from microscopic simulations. Phys Rev E 81(2)

  • Lei H, Fedosov DA, Karniadakis GE (2011) Time-dependent and outflow boundary conditions for dissipative particle dynamics. J Comput Phys 230(10):3765–3779

    Article  MathSciNet  MATH  Google Scholar 

  • Liu J, Chen S, Nie X, Robbins MO (2007) A continuum-atomistic simulation of heat transfer in micro- and nano-flows. J Comput Phys 227(1):279–291

    Article  MATH  Google Scholar 

  • Lorenz CD, Chandross M, Grest GS (2010) Large scale molecular dynamics simulations of vapor phase lubrication for MEMS. J Adhes Sci Technol 24(15–16):2453–2469

    Article  Google Scholar 

  • McClain MA, Culbertson CT, Jacobson SC, Allbritton NL, Sims CE, Ramsey JM (2003) Microfluidic devices for the high-throughput chemical analysis of cells. An Chem 75(21):5646–5655

    Article  Google Scholar 

  • McCulloch WS, Pitts W (1990) A logical calculus of the ideas immanent in nervous activity. Bull Math Biol 52(1–2):99–115

    Google Scholar 

  • Mohamed KM, Mohamad AA (2010) A review of the development of hybrid atomistic-continuum methods for dense fluids. Microfluid Nanofluid 8(3):283–302

    Article  Google Scholar 

  • Nagayama G, Cheng P (2004) Effects of interface wettability on microscale flow by molecular dynamics simulation. Int J Heat Mass Tran 47(3):501–513

    Article  MATH  Google Scholar 

  • Niavarani A, Priezjev NV (2010) Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids. Phys Rev E 81(1)

  • Nicholls W, Borg M, Lockerby D, Reese J (2012) Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics. Microfluid Nanofluid 12:257–264. doi:10.1007/s10404-011-0869-3

    Google Scholar 

  • Nie XB, Chen SY, Weinan E, Robbins MO (2004) A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. J Fluid Mech (500):55–64

  • Nie X, Robbins MO, Chen S (2006) Resolving singular forces in cavity flow: multiscale modeling from atomic to millimeter scales. Phys Rev Lett 96(13):1–4

    Article  Google Scholar 

  • O’connell TS, Thompson AP (1995) Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows. Phys Rev E 52(6):R5792–R5795

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  MATH  Google Scholar 

  • Prasianakis N, Ansumali S (2011) Microflow simulations via the lattice boltzmann method. Commun Comput Phys 9(5):1128–1136

    Google Scholar 

  • Priezjev NV (2007) Effect of surface roughness on rate-dependent slip in simple fluids. J Chem Phys 127(14):144708

    Article  Google Scholar 

  • Priezjev NV, Darhuber AA, Troian SM (2005) Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys Rev E 71(4)

  • Ren W (2007) Analytical and numerical study of coupled atomistic-continuum methods for fluids. J Comput Phys 227(2):1353–1371

    Article  MathSciNet  MATH  Google Scholar 

  • Ren W (2007) Seamless multiscale modeling of complex fluids using fiber bundle dynamics. Commun Math Sci 5(4):1027–1037

    Article  MathSciNet  MATH  Google Scholar 

  • Ren W, Weinan E (2005) Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J Comput Phys 204(1):1–26

    Google Scholar 

  • Schittenkopf C, Deco G, Brauer W (1997) Two strategies to avoid overfitting in feedforward networks. Neural Networks 10(3):505–516

    Article  MathSciNet  Google Scholar 

  • Schwartzentruber TE, Scalabrin LC, Boyd ID (2007) A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows. J Comput Phys 225(1):1159–1174

    Article  MathSciNet  MATH  Google Scholar 

  • Schwartzentruber TE, Scalabrin LC, Boyd ID (2008a) Hybrid particle-continuum simulations of hypersonic flow over a hollow-cylinder-flare geometry. AIAA J 46(8)

  • Schwartzentruber TE, Scalabrin LC, Boyd ID (2008b) Hybrid particle-continuum simulations of nonequilibrium hypersonic blunt-body flowfields. J Therm Heat Tran 22(1):29–37

    Article  Google Scholar 

  • Shapiro E, Drikakis D (2005a) Artificial compressibility, characteristics-based schemes for variable density, incompressible, multi-species flows. Part I. Derivation of different formulations and constant density limit. J Comput Phys 210(2):584–607

    Article  MathSciNet  MATH  Google Scholar 

  • Shapiro E, Drikakis D (2005b) Artificial compressibility, characteristics-based schemes for variable-density, incompressible, multispecies flows: Part II. multigrid implementation and numerical tests. J Comput Phys 210(2):608–631

    Article  MathSciNet  MATH  Google Scholar 

  • Singh SP, Nithiarasu P, Eng PF, Lewis RW, Arnold AK (2008) An implicit-explicit solution method for electro-osmotic flow through three-dimensional micro-channels. Int J Numer Meth Eng 73(8):1137–1152

    Article  MATH  Google Scholar 

  • Sofos F, Karakasidis T, Liakopoulos A (2009) Transport properties of liquid argon in krypton nanochannels: anisotropy and non-homogeneity introduced by the solid walls. Int J Heat Mass Trans 52(3–4):735–743

    Article  MATH  Google Scholar 

  • Sofos F, Karakasidis TE, Liakopoulos A (2012) Surface wettability effects on flow in rough wall nanochannels. Microfluid Nanofluid 12(1–4):25–31

    Article  Google Scholar 

  • Soong CY, Yen TH, Tzeng PY (2007) Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions. Phys Rev E 76(3):036303

    Article  Google Scholar 

  • Steijl R, Barakos NG (2010) Coupled navier-stokes-molecular dynamics simulations using a multi-physics flow simulation framework. Int J Numer Meth Fluids 62(10):1081–1106

    MathSciNet  MATH  Google Scholar 

  • Sutmann G (2002) Quantum simulations of complex many-body systems: from theory to algorithms, lecture notes, chapter Classical molecular dynamics. John von Neumann Institute for Computing, Juelich, NIC Series, vol 10, pp 211–254

  • Thompson PA, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389(6649):360–362

    Article  Google Scholar 

  • Valentini P, Schwartzentruber ET (2009) Large-scale molecular dynamics simulations of normal shock waves in dilute argon. Phys Fluids 21(6)

  • Verlet L (1967) Computer ’experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103

    Article  Google Scholar 

  • Wagner G, Flekkoy EG (2004) Hybrid computations with flux exchange. Philos Trans: Math Phys Eng Sci (Series A) 362(1821):1655–1665

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, He G (2007) A dynamic coupling model for hybrid atomistic-continuum computations. Chem Eng Sc 62(13):3574–3579

    Article  Google Scholar 

  • Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E (2007) Heterogeneous multiscale methods: a review. Comm Comp Phys 2(3):367–450

    MATH  Google Scholar 

  • Weinan E, Ren W, Vanden-Eijnden E (2009) A general strategy for designing seamless multiscale methods. J Comput Phys 228(15):5437–5453

    Google Scholar 

  • Werder T, Walther J, Koumoutsakos P (2005) Hybrid atomistic-continuum method for the simulation of dense fluid flows. J Comput Phys 205:373–390

    Article  MathSciNet  MATH  Google Scholar 

  • Wijesinghe HS, Hadjiconstantinou NG (2004) A hybrid atomistic-continuum formulation for unsteady, viscous, incompressible flows. CMES 5(6):515–526

    Google Scholar 

  • Wijesinghe HS, Hornung RD, Garcia AL, Hadjiconstantinou NG (2004) Three-dimensional hybrid continuum-atomistic simulations for multiscale hydrodynamics. J Fl Eng 126(5):768–777

    Article  Google Scholar 

  • Yang SC (2006) Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel. Microfluid Nanofluid 2(6):501–511

    Article  Google Scholar 

  • Yen TH, Soong CY, Tzeng PY (2007) Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows. Microfluid Nanofluid 3(6):665–675

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaos Asproulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asproulis, N., Drikakis, D. An artificial neural network-based multiscale method for hybrid atomistic-continuum simulations. Microfluid Nanofluid 15, 559–574 (2013). https://doi.org/10.1007/s10404-013-1154-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1154-4

Keywords

Navigation