Skip to main content
Log in

An integrated microfluidic system capable of sample pretreatment and hybridization for microarrays

  • Original Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Sample pretreatment is a critical series of processing steps in most protocols involving microarrays. It usually involves a labor-intensive, time-consuming process, which also requires bulky and costly apparatus to ensure a high-quality RNA extraction. Furthermore, an efficient hybridization process is also critical for practical applications in microarrays. The present study, therefore, reports a new microfluidic system capable of automatically performing the sample pretreatment and hybridization processes for microarrays. Process steps including cell lysis, extraction of messenger ribonucleic acid (mRNA), reverse transcription (RT), purification of complementary deoxyribonucleic acid (cDNA), and hybridization, are all performed automatically in this miniature system. When compared to the conventional methods, which usually require well-trained personnel and time consuming processes, this proposed microfluidic system can perform the entire experimental protocol automatically within 6 h. This developed system may provide a useful platform for subsequent genetic analysis and diagnostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

Au:

Gold

BCIP:

5-Bromo-4-chloro3-indolyl-phosphate

CCD:

Charge-coupled device

cDNA:

Complementary deoxyribonucleic acid

CNC:

Computer-numerical-control

DEPC:

Diethyl pyrocarbonate

DI:

Deionized

DIG:

Digoxigenin

dNTP:

Deoxyribonucleotide triphosphate

EtBr:

Ethidium bromide

EMV:

Electromagnetic valve

MEMS:

Micro-electro-mechanical-systems

NBT:

Nitroblue-tetrazolium

mRNA:

Messenger ribonucleic acid

PBS:

Phosphate buffer solution

PCR:

Polymerase chain reaction

PDM:

Spolydimethylsiloxane

PMMA:

Polymethylmethacrylate

RNA:

Ribonucleic acid

RNase:

Ribonuclease

RNAse H:

Ribonuclease H

RT:

Reverse transcription

SNP:

Single nucleotide polymorphism

UV:

Ultraviolet

References

  • Albertson DG, Pinkel D (2003) Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 12:R145–R152

    Article  Google Scholar 

  • Auroux PA, Iossifidi D, Reyes DR, Manz A (2002) Micro total analysis systems. 2. Anal Stand Oper Appl Anal Chem 74:2637–2652

    Google Scholar 

  • Baner J, Isaksson A, Waldenstroem E, Jarvius J, Landegren U, Nilsson M (2003) Parallel gene analysis with allele-specific padlock probes and tag microarrays. Nucl Acids Res 31:e103/1–e103/7

  • Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M Jr, Haussler D (2000) Knowledge-based analysis of microarray gene expression data by using support vector machines. PNAS 97:262–267

    Article  Google Scholar 

  • Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SPA (1996) Accessing genetic information with high-density DNA arrays. Science 274:610–614

    Article  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  Google Scholar 

  • Choi JW, Ahn CH, Bhansali S, Henderson HT (2000) A new magnetic bead-based, filterless bio-separator with planar electromagnet surfaces for integrated bio-detection systems. Sens Actuators B Chem 68:34–39

    Article  Google Scholar 

  • Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA. DNA and proteins from cell and tissue samples. Biotechniques 15:532–537

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159

    Article  Google Scholar 

  • Edman CF, Raymond DE, Wu DJ, Tu E, Sosnowski RG, Butler WF, Nerenberg M, Heller MJ (1997) Electric field directed nucleic acid hybridization on microchips. Nucl Acids Res 25:4907–4914

    Article  Google Scholar 

  • Fan JB, Hu SX, Craumer WC, Barker DL (2005) BeadArray™-based solutions for enabling the promise of pharmacogenomics. Biotechniques 39:583–588

    Article  Google Scholar 

  • Froehlich H, Fellmann M, Sueltmann H, Poustka, Beissbarth T (2007) Large scale statistical inference of signaling pathways from RNAi and microarray data. Bioinformatics. doi:10.1186/1471-2105-8-386

  • Gao X, Gulari E, Zhou X (2004) In situ synthesis of oligonucleotide microarrays. Biopolymers 73(5):579–596

    Article  Google Scholar 

  • Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1:22–40

    Google Scholar 

  • Grimm V, Ezaki S, Susa M, Knabbe C, Schmid RD, Bachmann TT (2004) Use of DNA microarrays for rapid genotyping of TEM beta-lactamases that confer resistance. J Clin Microbiol 42:3766–3777

    Article  Google Scholar 

  • Grodzinski P, Liu R, Yang J, Ward MD (2004) Microfluidic system integration in sample preparation chip-sets-a summary. In: Proceedings of the 26th annual international conference of the IEEE EMBS, pp 2615–2618

  • Hacia JG (1999) Resequencing and mutational analysis using oligonucleotide microarrays. Nat Genet 21:42–47

    Article  Google Scholar 

  • Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128:161–167

    Article  Google Scholar 

  • Harkin DP (2000) Uncovering functionally relevant signaling pathways using microarray-based expression profiling. Oncologist 5:501–507

    Article  Google Scholar 

  • Hong JW, Studer V, Hang G, Anderson WF, Quake SR (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat Biotechnol 22:435–439

    Article  Google Scholar 

  • Huang Y, Mather EL, Bell JL, Madou M (2002) MEMS-based sample preparation for molecular diagnostics. Anal Bioanal Chem 372:49–65

    Article  Google Scholar 

  • Huang CJ, Lin HI, Shiesh SC, Lee GB (2010) Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Biosens Bioelectron 7:1761–1766

    Article  Google Scholar 

  • Ishikawa S, Komura D, Tsuji S, Nishimura K, Yamamoto S, Panda B, Huang J, Fukayama M, Jones KW, Aburatani H (2005) Allelic dosage analysis with genotyping microarrays. Biochem Biophys Res Commun 333:1309–1314

    Article  Google Scholar 

  • Jang SJ, Soria JC, Wang L, Hassan KA, Morice RC, Walsh GL, Hong WK, Mao Li (2001) Activation of melanoma antigen tumor antigens occurs early in lung carcinogenesis. Cancer Res 61:7959–7963

    Google Scholar 

  • Kathy M (2006) Modification of the standard trizol-based technique improves the integrity of RNA isolated from RNase-rich placental tissue. Clin Chem 52:159–160

    Article  Google Scholar 

  • Kerr MK, Churchill GA (2001) Experimental design for gene expression microarrays. Biostatistics 2:183–201

    Article  MATH  Google Scholar 

  • Lien KY, Lee WC, Lei HY, Lee GB (2007) Integrated reverse transcription polymerase chain reaction systems for virus detection. Biosens Bioelectron 22:1739–1748

    Article  Google Scholar 

  • Liu CJ, Lien KY, Weng CY, Shin JW, Chang TY, Lee GB (2009) Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes. Biomed Microdevices 11:339–350

    Article  Google Scholar 

  • Mary-Huard T, Daudin JJ, Robin S, Bitton F, Cabannes E, Hilson P (2004) Spotting effect in microarray experiments. BMC Bioinformatics 5:63

    Article  Google Scholar 

  • Meaburn E, Butcher LM, Schalkwyk LC, Plomin R (2006) Genotyping pooled DNA using 100K SNP microarrays: a step towards genome wide association scans. Nucl Acids Res 34(4):e27

    Article  Google Scholar 

  • Mezzasoma L, Bacarese-Hamilton T, Cristina MD, Rossi R, Bistoni F, Crisanti A (2002) Antigen microarrays for serodiagnosis of infectious diseases. Clin Chem 48:121–130

    Google Scholar 

  • Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using bubble jet technology. Nat Biotechnol 18:438–441

    Article  Google Scholar 

  • Radtkey R, Feng L, Muralhida M, Duhon M, Canter D, DiPierro D, Fallon S, Tu E, McElfresh K, Nerenberg M, Sosnowski R (2000) Rapid, high fidelity analysis of simple sequence repeats on an electronically active DNA microchip. Nucl Acids Res 28:E17

    Article  Google Scholar 

  • Russo G, Zegar C, Giordano A (2003) Advantages and limitations of microarray technology in human cancer. Oncogene 22:6497–6507

    Article  Google Scholar 

  • Selvey S, Thompson EW, Matthaei K, Lea RA, Irivng MG, Griffiths LR (2001) Beta-actin—an unsuitable internal control for RT-PCR. Mol Cell Probes 15(5):307–311

    Article  Google Scholar 

  • Southern E, Mir K, Shchepinov M (1999) Molecular interactions on microarrays. Nat Genet 21:5–9

    Article  Google Scholar 

  • Tseng HY, Wang CH, Lin WY, Lee GB (2007) Membrane-activated microfluidic rotary devices for pumping and mixing. Biomed Microdevices 9:545–554

    Article  Google Scholar 

  • Vaquerizas JM, Dopazo J, Díaz-Uriarte R (2004) Web-based diagnosis and normalization for microarray data. Bioinformatics 20(18):3656–3658

    Article  Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent Dev Anal Chem 76:3373–3385

    Google Scholar 

  • Wang L, Li PCH (2010) Optimization of a microfluidic microarray device for the fast discrimination of fungal pathogenic DNA. Anal Biochem 400:282–288

    Article  Google Scholar 

  • Wu CH, Lin SR, Yu FJ, Wu DC, Pan YS, Hsieh JS, Huang SY, Wang JY (2006) Development of a high-throughput membrane-array method for molecular diagnosis of circulating tumor cells in patients with gastric cancers. Int J Cancer 119(2):373–379

    Article  Google Scholar 

  • Xiang X, Qiu Q, Hegele RD, Tan WC (2001) Comparison of different methods of total RNA extraction for viral detection in sputum. J Virol Methods 94:129–135

    Article  Google Scholar 

  • Yang YN, Hsiung SK, Lee GB (2009) A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluid Nanofluid 6:823–833

    Article  Google Scholar 

  • Yuen PK, Li G, Bao Y, Müller UR (2003) Microfluidic devices for fluidic circulation and mixing improve hybridization signal intensity on DNA arrays. Lab Chip 3:46–50

    Article  Google Scholar 

  • Zhang Y, Coyne MY, Will SG, Levenson CH, Kawasaki ES (1991) Single-base mutational analysis of cancer and genetic diseases using membrane bound modified oligonucleotides. Nucl Acids Res 19:3929–3933

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Council in Taiwan for financial support of this project (NSC 98-2627-B-006-006 and 98-2627-B-006-005). Partial financial support from grant (DOH 98-TD-B-111-004, DOH 99-TD-C-111-003) is also greatly appreciated. The authors also want to extend their appreciation to Professor Shiu-Ru Lin for her assistance on the membrane array.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwo-Bin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, CH., Shin, JW., Chang, TY. et al. An integrated microfluidic system capable of sample pretreatment and hybridization for microarrays. Microfluid Nanofluid 10, 999–1009 (2011). https://doi.org/10.1007/s10404-010-0729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0729-6

Keywords

Navigation