Skip to main content

Advertisement

Log in

MEMS-based sample preparation for molecular diagnostics

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract.

Completion of the Human Genome Project is driving the rapid development of molecular diagnostics in the laboratory. To accelerate the penetration of genetic tests and other nucleic acid-based tests into clinical markets, simple, compact, automatic sample-preparation systems for molecular diagnostics must be developed. Microelectromechanical systems (MEMS) is a promising approach for the development of automated sample preparation for the clinical laboratory or point-of-care setting. This review discusses MEMS-based components that could be applied to the different stages of the sample-preparation process such as cell separation, nucleic acid purification, and nucleic acid amplification. Examples of functional component integration are given. Issues discussed include partitioning of functions between the instrument and disposable unit, methods of propulsion of fluids and particles, vapor and liquid barriers, and sample size. Although further evaluation and development are needed to provide practical solutions to some of these issues, we conclude that MEMS-based components might contribute to some components in a sample-preparation system consisting of modular instruments and disposable units, but will not provide a generic or a totally integrated solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Mather, E.L., Bell, J.L. et al. MEMS-based sample preparation for molecular diagnostics. Anal Bioanal Chem 372, 49–65 (2002). https://doi.org/10.1007/s00216-001-1191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-001-1191-9

Navigation