Skip to main content
Log in

Körperliche Aktivität und endotheliale Dysfunktion bei Typ-2-Diabetikern: über die Rolle von Stickstoffmonoxid und oxidativem Stress

Physical activity and endothelial dysfunction in type 2 diabetic patients: the role of nitric oxide and oxidative stress

  • Review
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2011

Summary

Type 2 diabetic patients have an increased level of systemic free radicals, which severely restrict the bioavailability of endothelium-derived nitric oxide (NO) and thus contribute to the development of an endothelial dysfunction. This review analyses the influence of physical training on molecular development mechanisms of the endothelial dysfunction and determines the significance of regular physical exercise for the endothelial function in type 2 diabetic patients. Systematic training reinforces the endogenic antioxidative capacity and results in a reduction in oxidative stress. Training – also combined with a change in diet – furthermore reduces hyperglycaemic blood sugar levels, thus curbing a major source of free radicals in diabetes. Moreover, physical exercise enhances vascular NO synthesis through an increased availability/activity of endothelial NO synthases (eNOS). Endurance, as well as resistance training with submaximal intensity or a combination of both forms of training is suitable to effectively improve the endothelial function in type 2 diabetic patients in the long term.

Zusammenfassung

Typ-2-Diabetiker weisen eine erhöhte Konzentration systemischer freier Radikale auf, welche die Bioverfügbarkeit von Stickstoffmonoxid (NO) im Endothel stark einschränken und damit zur Entstehung einer endothelialen Dysfunktion beitragen. Diese Übersichtsarbeit analysiert den Einfluss von körperlichem Training auf molekulare Entstehungsmechanismen der endothelialen Dysfunktion und eruiert die Bedeutung von regelmäßiger sportlicher Aktivität für die Endothelfunktion bei Typ-2-Diabetikern. Systematisches Training verstärkt die endogene antioxidative Kapazität und bewirkt eine Abnahme von oxidativem Stress. Sportliche Aktivität – auch in Kombination mit einer Ernährungsumstellung – verringert außerdem hyperglykämische Blutzuckerspiegel, wodurch eine Hauptquelle freier Radikale beim Diabetes eingedämmt wird. Zudem steigert körperliches Training die vaskuläre NO-Synthese durch eine erhöhte Verfügbarkeit/Aktivität der endothelialen NO-Synthasen (eNOS). Ein Ausdauer- als auch ein Krafttraining mit submaximalen Intensitäten oder eine Kombination beider Trainingsformen eignet sich langfristig, die Endothelfunktion bei Typ-2-Diabetikern wirksam zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Geiss LS, Herman WH, Smith PJ. Mortality in non-insulin-dependent diabetes. In: National Diabetes Data Group (Hrsg.) Diabetes in America. US Department of Health and Human Services, Public Health Service, National Institute of Health, Bethesda, MD, pp. 233–257, 1995

  • Ross R. Atherosclerosis – an inflammatory disease. N Engl J Med, 340: 115–126, 1999

    Article  PubMed  CAS  Google Scholar 

  • Rösen P. Endotheliale Dysfunktion: ein Synonym für funktionelle Atherosklerose. J Kardiol, 9: 556–652, 2002

    Google Scholar 

  • Espinola-Klein C, Münzel T. Oxidativer Stress und Endothelfunktion: Welche Bedeutung hat das Geschlecht? Blickpunkt der Mann, 6: 29–31, 2004

    Google Scholar 

  • Atalaya M, Laaksonen DE. Diabetes, oxidative stress and physical exercise. J Sports Sci Med, 1: 1–14, 2002

    Google Scholar 

  • Münzel T, Daiber A, Ullrich V, Mulsch A. Vascular consequence of endothelial nitric oxide synthase uncoupling fort he activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Atherioscler Thromb Vasc Biol, 25: 1551–1557, 2005

    Article  Google Scholar 

  • Celermajer DS. Endothelial dysfunction: does it matter? Is it reversible? J Am Coll Cardiol, 30: 325–333, 1997

    Article  PubMed  CAS  Google Scholar 

  • El Mabrouk M, Singh A, Touyz RM, Schiffrin EL. Antiproliferative effect of L-NAME on rat vascular smooth muscle cells. Life Sci, 67: 1613–1623, 2000

    Article  PubMed  CAS  Google Scholar 

  • Gimbrone MA. Endothelial dysfunction and the pathogenesis of atherosclerosis. In: Fidge NH, Nestel PJ (eds) Atherosclerosis VII. Proceedings of the 7th Int. Symp. on Atherosclerosis. Excerpta Medica, Amsterdam, pp. 367–369, 1986

  • Karabag T, Kaya A, Yavuz S, et al. The relation of HOMA index with endothelial functions determined by flow mediated dilatation method among hyperglycemic patients. Indian Heart J, 59: 463–467, 2007

    PubMed  Google Scholar 

  • Steinberg HO, Chaker H, Leaming R, et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest, 97: 2601–2610, 1996

    Article  PubMed  CAS  Google Scholar 

  • Steinberg HO, Paradisi G, Cronin J, et al. Type II diabetes abrogates sex differences in endothelial function in premenopausal women. Circulation, 101: 2040–2046, 2000

    PubMed  CAS  Google Scholar 

  • Suzuki M, Takamisawa I, Yoshimasa Y, Harano Y. Association between insulin resistance and endothelial dysfunction in type 2 diabetes and the effects of pioglitazone. Diabetes Res Clin Pract, 76: 12–17, 2007

    Article  PubMed  CAS  Google Scholar 

  • Williams SB, Cusco JA, Roddy MA, et al. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol, 27: 567–574, 1996

    Article  PubMed  CAS  Google Scholar 

  • Victor VM, Rocha M, Sola E, et al. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des, 15: 2988–3002, 2009

    Article  PubMed  CAS  Google Scholar 

  • Collier A, Rumley A, Rumley AG, et al. Free radical activity and hemostatic factors in NIDDM patients with and without microalbuminuria. Diabetes, 41: 909–913, 1992

    Article  PubMed  CAS  Google Scholar 

  • Osuntokl AA, Fasanmade OA, Adekola AO, Amira CO. Lipid peroxidation and erythrocyte fragility in poorly controlled type 2 diabetes mellitus. Nig Q J Hosp Med, 17: 148–151, 2007

    PubMed  CAS  Google Scholar 

  • Pandey KB, Mishra N, Rizvi SI. Protein oxidation biomarkers in plasma of type 2 diabetic patients. Clin Biochem, 43: 508–511, 2010

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Hotta N, Sakamoto N, et al. Lipid peroxide level in the plasma of diabetic patients. Biochem Med, 21: 104–107, 1979

    Article  PubMed  CAS  Google Scholar 

  • Pandey KB, Mishra N, Rizvi SI. Myricetin may provide protection against oxidative stress in type 2 diabetic erythrocytes. Z Naturforsch C, 64: 626–630, 2009

    PubMed  CAS  Google Scholar 

  • Peuchant E, Delmas-Beauvieux MC, Couchouron A, et al. Short-term insulin therapy and normoglycemia. Effects on erythrocyte lipid peroxidation in NIDDM patients. Diabetes Care, 20: 202–207, 1997

    Article  PubMed  CAS  Google Scholar 

  • Adaikalakoteswari A, Balasubramanyam M, Rema M, Mohan V. Differential gene expression of NADPH oxidase (p22phox) and hemoxygenase-1 in patients with Type 2 diabetes and microangiopathy. Diabet Med, 23: 666–674, 2006

    Article  PubMed  CAS  Google Scholar 

  • Belia S, Santilli F, Beccaficio S, et al. Oxidative-induced membrane damage in diabetes lymphocytes: effects on intracellular Ca(2+) homeostasis. Free Radic Res, 43: 138–148, 2009

    Article  PubMed  CAS  Google Scholar 

  • Scheede-Bergdahl C, Penkowa M, Hidalgo J, et al. Metallothionein-mediated antioxidant defense system and its response to exercise training are impaired in human type 2 diabetes. Diabetes, 54: 3089–3094, 2005

    Article  PubMed  CAS  Google Scholar 

  • Sorrentino SA, Bahlmann FH, Besler C, et al. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation, 116: 163–173, 2007

    Article  PubMed  CAS  Google Scholar 

  • Kaneto H, Katakami N, Matsuhisa M, Matsuoka TA. Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators Inflamm, 2010: 453892, 2010

    Article  PubMed  Google Scholar 

  • Wolff SP, Jiang ZY, Hunt JV. Protein glycation and oxidative stress in diabetes mellitus and ageing. Free Radic Biol Med, 10: 339–352, 1991

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 414: 813–820, 2001

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 404: 787–790, 2000

    Article  PubMed  CAS  Google Scholar 

  • Bravi MC, Pietrangeli P, Laurenti O, et al. Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients. Metabolism, 46: 1194–1198, 1997

    Article  PubMed  CAS  Google Scholar 

  • Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes, 49: 1939–1945, 2000

    Article  PubMed  CAS  Google Scholar 

  • Anderssohn M, Schwedhelm E, Lüneburg N, et al. Asymmetric dimethylarginine as a mediator of vascular dysfunction and a marker of cardiovascular disease and mortality: an intriguing interaction with diabetes mellitus. Diab Vasc Dis Res, 7: 105–118, 2010

    Article  PubMed  Google Scholar 

  • Newsholme P, Homem De Bittencourt PI, O'Hagan C, et al. Exercise and possible molecular mechanisms of protection from vascular disease and diabetes: the central role of ROS and nitric oxide. Clin Sci (Lond.), 118: 341–349, 2009

    Article  Google Scholar 

  • Maxwell SR, Thomason H, Sandler D, et al. Poor glycaemic control is associated with reduced serum free radical scavenging (antioxidant) activity in non-insulin-dependent diabetes mellitus. Ann Clin Biochem, 34: 638–644, 1997

    PubMed  Google Scholar 

  • Bhatia S, Shukla R, Venkata Madhu S, et al. Antioxidant status, lipid peroxidation and nitric oxide end products in patients of type 2 diabetes mellitus with nephropathy. Clin Biochem, 36: 557–562, 2003

    Article  PubMed  CAS  Google Scholar 

  • Kurtul N, Bakan E, Aksoy H, Baykal O. Leukocyte lipid peroxidation, superoxide dismutase and catalase activities of type 2 diabetic patients with retinopathy. Acta Medica (Hradec Kralove), 48: 35–38, 2005

    CAS  Google Scholar 

  • Memisogullari R, Taysi S, Bakan E, Capoglu I. Antioxidant status and lipid peroxidation in type II diabetes mellitus. Cell Biochem Funct, 21: 291–296, 2003

    Article  PubMed  CAS  Google Scholar 

  • Sundaram RK, Bhaskar A, Vijayalingam S, et al. Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin Sci (Lond.), 90: 255–260, 1996

    CAS  Google Scholar 

  • Vijayalingam S, Parthiban A, Shanmugasundaram KR, Mohan V. Abnormal antioxidant status in impaired glucose tolerance and non-insulin-dependent diabetes mellitus. Diabet Med, 13: 715–719, 1996

    Article  PubMed  CAS  Google Scholar 

  • Landmesser U, Merten R, Spiekermann S, et al. Vascular extracellular superoxide dismutase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation, 16: 2264–2270, 2000

    Google Scholar 

  • Ashok Kumar P, Rajagopal G. Lipid peroxidation in erythrocytes of patients with type 2 diabetes mellitus. Indian J Clinical Biochem, 18: 71–74, 2003

    Article  Google Scholar 

  • Akkus I, Kalak S, Vural H, et al. Leukocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase and serum and leukocyte vitamin C levels of patients with type II diabetes mellitus. Clin Chim Acta, 244: 221–227, 1996

    Article  PubMed  CAS  Google Scholar 

  • Kuzkaya N, Weissmann N, Harrison DG, Dikalov S. Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. J Biol Chem, 278: 22546–22554, 2003

    Article  PubMed  CAS  Google Scholar 

  • Schulze E, Jansen T, Wenzel P, et al. Nitric oxide, tetrahydrobiopterin, oxidative stress, and endothelial dysfunction in hypertension. Antioxid Redox Signal, 10: 1115–1126, 2008

    Article  Google Scholar 

  • Weber M, Lauer N, Mülsch A, Kojda G. The effect of peroxynitrite on the catalytic activity of soluble guanylyl cyclase. Free Radic Biol Med, 31: 1360–1367, 2001

    Article  PubMed  CAS  Google Scholar 

  • Zou M, Martin C, Ullrich V. Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol Chem, 378: 707–713, 1997

    Article  PubMed  CAS  Google Scholar 

  • Steinberg HO, Baron AD. Vascular function, insulin resistance and fatty acids. Diabetologica, 45: 623–634, 2002

    Article  CAS  Google Scholar 

  • Kearney MT, Duncan ER, Kahn M, Wheatcroft SB. Insulin resistance and endothelial cell dysfunction: studies in mammalian models. Exp Physiol, 93: 158–163, 2008

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Chen K, Whaley-Connell AT, et al. Skeletal muscle insulin resistance: role of inflammatory cytokines and reactive oxygen species. Am J Physiol Regul Integr Comp Physiol, 294: R673–R680, 2008

    Article  PubMed  CAS  Google Scholar 

  • Du XL, Edelstein D, Dimmeler S, et al. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest, 108: 1341–1348, 2001

    PubMed  CAS  Google Scholar 

  • Itabe H. Oxidative modification of LDL: its pathological role in atherosclerosis. Clin Rev Allergy Immunol, 37: 4–11, 2009

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Sasaki K, Namiki Y, et al. Edaravone, a novel radical scavenger, inhibits oxidative modification of low-density lipoprotein (LDL) and reverses oxidized LDL-mediated reduction in the expression of endothelial nitric oxide synthase. Atherosclerosis, 179: 97–102, 2005

    Article  PubMed  CAS  Google Scholar 

  • Roebuck KA. Oxidant stress regulation of IL-8 and ICAM-1 gene expression: differential activation and binding of the transcription factors AP-1 and NF-kappaB (Review). Int J Mol Med, 4: 223–230, 1999

    PubMed  CAS  Google Scholar 

  • Balletshofer BM, Häring HU. Typ-2 Diabetes, Insulinresistenz und endotheliale Dysfunktion. Hämostaseologie, 4: 159–166, 2001

    Google Scholar 

  • Davda RK, Stepniakowski KT, Lu G, et al. Oleic acid inhibits endothelial nitric oxide synthase by a protein kinase C-independent mechanism. Hypertension, 26: 764–770, 1995

    PubMed  CAS  Google Scholar 

  • Pieper GM, Dondlinger LA. Plasma and vascular tissue arginine are decreased in diabetes: acute arginine supplementation restores endothelium-dependent relaxation by augmenting cGMP production. J Pharmacol Exp Ther, 283: 684–691, 1997

    PubMed  CAS  Google Scholar 

  • Ashton T, Rowlands CC, Jones E, et al. Electron spin resonance spectrometric detection of oxygen-centred radicals in human serum following exhaustive exercise. Eur J Appl Physiol, 77: 498–502, 1998

    Article  CAS  Google Scholar 

  • Bloch W, Schmidt A. Sport und freie Radikale. Blickpunkt der Mann, 3: 13–18, 2004

    Google Scholar 

  • Niess AM, Fehrenbach E, Northoff H, Dickhuth HH. Freie Radikale und oxidativer Stress bei körperlicher Belastung und Trainingsanpassung – Eine aktuelle Übersicht. Dt Z Sportmed, 12: 345–353, 2002

    Google Scholar 

  • Reid MB. Redox modulation of skeletal muscle contraction: what we know and what we don't. J Appl Physiol, 90: 724–731, 2001

    Article  PubMed  CAS  Google Scholar 

  • Hollander J, Fiebig R, Gore M, et al. Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pflügers Arch, 442: 426–434, 2001

    Article  PubMed  CAS  Google Scholar 

  • Mann GE, Niehueser-Saran J, Watson A, et al. Nrf2/ARE regulated antioxidant gene expression in endothelial and smooth muscle cells in oxidative stress: implications for atherosclerosis and preeclampsia. Acta Physiologica Sinica, 59: 117–127, 2007

    PubMed  CAS  Google Scholar 

  • Miyazaki H, Oh-ishi S, Ookawara T, et al. Strenuous endurance training in humans reduces oxidative stress following exhaustive exercise. Eur J Appl Physiol, 84: 1–6, 2001

    Article  PubMed  CAS  Google Scholar 

  • Elosua R, Molina L, Fito M, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis, 167: 327–334, 2003

    Article  PubMed  CAS  Google Scholar 

  • Ennezat PV, Malendowicz SL, Testa M, et al. Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol, 38: 194–198, 2001

    Article  PubMed  CAS  Google Scholar 

  • Linke A, Adams V, Schulze PC, et al. Antioxidative effects of exercise training in patients with chronic heart failure: increase in radical scavenger enzyme activity in skeletal muscle. Circulation, 111: 1763–1770, 2005

    Article  PubMed  CAS  Google Scholar 

  • Ohno H, Yahata T, Sato Y, et al. Physical training and fasting erythrocyte activities of free radical scavenging enzyme systems in sedentary men. Eur J Appl Physiol Occup Physiol, 57: 173–176, 1988

    Article  PubMed  CAS  Google Scholar 

  • Parise G, Phillips SM, Kaczor JJ, Tarnopolsky MA. Antioxidant enzyme activity is up-regulated after unilateral resistance exercise training in older adults. Free Radic Biol Med, 39: 289–295, 2005

    Article  PubMed  CAS  Google Scholar 

  • Shin YA, Lee JH, Song W, Jun TW. Exercise training improves the antioxidant enzyme activity with no changes of telomere length. Mech Ageing Dev, 129: 254–260, 2008

    Article  PubMed  CAS  Google Scholar 

  • Evelo CT, Palmen NG, Artur Y, Janssen GM. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur J Appl Physiol Occup Physiol, 64: 354–358, 1992

    Article  PubMed  CAS  Google Scholar 

  • Adams V, Linke A, Kränkel N, et al. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation, 111: 555–562, 2005

    Article  PubMed  CAS  Google Scholar 

  • Iborra RT, Ribeiro IC, Neves MQ, et al. Aerobic exercise training improves the role of high-density lipoprotein antioxidant and reduces plasma lipid peroxidation in type 2 diabetes mellitus. Scand J Med Sci Sports, 18: 742–750, 2008

    Article  PubMed  CAS  Google Scholar 

  • Lazarevic G, Antic S, Cvetkovic T, et al. Effects of regular exercise on cardiovascular risk factors profile and oxidative stress in obese type 2 diabetic patients in regard to SCORE risk. Acta Cardiol, 63: 485–491, 2008

    Article  PubMed  Google Scholar 

  • Nojima H, Watanabe H, Yamane K, et al. Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabolism, 57: 170–176, 2008

    Article  PubMed  CAS  Google Scholar 

  • Roberts CK, Won D, Pruthi S, et al. Effect of a diet and exercise intervention on oxidative stress, inflammation and monocyte adhesion in diabetic men. Diabetes Res Clin Pract, 73: 249–259, 2006

    Article  PubMed  CAS  Google Scholar 

  • Wycherley TP, Brinkworth GD, Noakes M, et al. Effect of caloric restriction with and without exercise training on oxidative stress and endothelial function in obese subjects with type 2 diabetes. Diabetes Obes Metab, 10: 1062–1073, 2008

    Article  PubMed  CAS  Google Scholar 

  • Kadoglou NP, Iliadis F, Angelopoulou N, et al. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehabil, 14: 837–843, 2007

    Article  PubMed  Google Scholar 

  • Santos JM, Ribeiro SB, Gaya AR, et al. Skeletal muscle pathways of contraction-enhanced glucose uptake. Int J Sports Med, 29: 785–794, 2008

    Article  PubMed  CAS  Google Scholar 

  • Walther C, Gielen S, Hambrecht R. The effect of exercise training on endothelial function in cardiovascular disease in humans. Exerc Sport Sci Rev, 32: 129–134, 2004

    Article  PubMed  Google Scholar 

  • Resnick N, Gimbrone MA. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J, 9: 874–882, 1995

    PubMed  CAS  Google Scholar 

  • Boo YC, Sorescu G, Boyd N, et al. Shear stress at stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms – role of protein kinase A. J Biol Chem, 277: 3388–3396, 2002

    Article  PubMed  CAS  Google Scholar 

  • Corson MA, James NL, Latta SE, et al. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res, 79: 984–991, 1996

    PubMed  CAS  Google Scholar 

  • Dimmler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 399: 601–605, 1999

    Article  Google Scholar 

  • Green DJ, Maiorana A, O'Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol, 561: 1–25, 2004

    Article  PubMed  CAS  Google Scholar 

  • Hambrecht R, Adams V, Erbs S, et al. Regular physical activity improves endothelial funtion in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation, 107: 3152–3158, 2003

    Article  PubMed  CAS  Google Scholar 

  • Maiorana A, O'Driscoll G, Cheetham C, et al. The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol, 38: 860–866, 2001

    Article  PubMed  CAS  Google Scholar 

  • Okada S, Hiuge A, Makino H, et al. Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J Atheroscler Thromb, 13: 2–7, 2010

    Google Scholar 

  • Lavrencic A, Salobir BG, Keber I. Physical training improves flow-mediated dilation in patients with the polymetabolic syndrome. Arterioscler Thromb Vasc Biol, 20: 551–555, 2000

    Article  PubMed  CAS  Google Scholar 

  • Cohen ND, Dunstan DW, Robinson C, et al. Improved endothelial function following a 14-month resistance exercise training program in adults with type 2 diabetes. Diabetes Res Clin Pract, 79: 405–411, 2008

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brinkmann.

Additional information

Ein Erratum zu diesem Beitrag ist unter http://dx.doi.org/10.1007/s10354-011-0036-1 zu finden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkmann, C., Schwinger, R. & Brixius, K. Körperliche Aktivität und endotheliale Dysfunktion bei Typ-2-Diabetikern: über die Rolle von Stickstoffmonoxid und oxidativem Stress. Wien Med Wochenschr 161, 305–314 (2011). https://doi.org/10.1007/s10354-011-0868-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-011-0868-8

Keywords

Schlüsselwörter

Navigation