Skip to main content

Advertisement

Log in

Oxidative Modification of LDL: Its Pathological Role in Atherosclerosis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Oxidized low-density lipoprotein (OxLDL) is a well-known risk marker for cardiovascular diseases. OxLDL has shown a variety of proatherogenic properties in experiments performed in vitro. In addition, immunological studies using monoclonal antibodies have revealed the occurrence of OxLDL in vivo in atherosclerotic lesions and patients’ plasma specimens. Resent clinical studies have indicated the prospective significance of plasma OxLDL measurements; however, the behavior and metabolism of OxLDL in vivo is poorly understood. The mechanism by which LDL is oxidized is not clear, and the modified structures of OxLDL are not yet fully understood, partly because OxLDL is a mixture of heterogeneously modified particles. Here, I discuss the recent studies on oxidative modifications in OxLDL and its clinical and pathological features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stocker R (1994) Lipoprotein oxidation: mechanistic aspects, methodological approaches and clinical relevance. Curr Opin Lipidol 5:422–433

    Article  PubMed  CAS  Google Scholar 

  2. Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta 1488:189–210

    PubMed  CAS  Google Scholar 

  3. Witztum JL, Steinberg D (1991) Role of oxidized low density lipoprotein in atherosclerosis. J Clin Invest 88:1785–1792

    Article  PubMed  CAS  Google Scholar 

  4. Itabe H (1998) Oxidized phospholipids as a new landmark in atherosclerosis. Prog Lipid Res 37:181–207

    Article  PubMed  CAS  Google Scholar 

  5. Uchida K, Stadtman ER (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci U S A 89:4544–4548

    Article  PubMed  CAS  Google Scholar 

  6. Podrez EA, Abu-Soud HM, Hazen SL (2000) Myeloperoxidase-generated oxidants and atherosclerosis. Free Radic Biol Med 28:1717–1725

    Article  PubMed  CAS  Google Scholar 

  7. Hazen SL, Heinecke JW (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99:2075–2081

    Article  PubMed  CAS  Google Scholar 

  8. Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-ishi S, Steinbrecher UP et al (1997) Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atheroscleorotic intima. J Biol Chem 272:1433–1436

    Article  PubMed  CAS  Google Scholar 

  9. Wang Z, Nicholls SJ, Rodriguez ER, Kummu O, Hörkkö S, Barnard J, Reynolds WF, Topol EJ, DiDonato JA, Hazen SL (2007) Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 13:1176–11874

    Article  PubMed  CAS  Google Scholar 

  10. Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  PubMed  CAS  Google Scholar 

  11. Itabe H, Jimi S, Kamimura S, Suzuki K, Uesugi N, Imanaka T et al (1998) Appearance of cross linked proteins in human atheroma and rat pre-fibrotic liver detected by a new monoclonal antibody. Biochim Biophys Acta 1406:28–39

    PubMed  CAS  Google Scholar 

  12. Itabe H, Takeshima E, Iwasaki H, Kimura J, Yoshida Y, Imanaka T et al (1994) A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholine and polypeptides. J Biol Chem 269:15274–15279

    PubMed  CAS  Google Scholar 

  13. Itabe H, Yamamoto H, Imanaka T, Suzuki M, Kawai Y, Nakagawa Y, Suzuki A, Takano T (1996) Oxidized phosphatidylcholines that modify proteins. Analysis by anti-oxidized low density lipoprotein monoclonal antibody. J Biol Chem 271:33208–33217

    Article  PubMed  CAS  Google Scholar 

  14. Imanaga Y, Sakata N, Tekebayashi S, Matsunaga A, Sasaki J, Arakawa K et al (2000) In vivo and in vitro evidence for glycoxidation of low density lipoprotein in atherosclerotic plaques. Atherosclerosis 150:343–355

    Article  PubMed  CAS  Google Scholar 

  15. Ikura Y, Ohsawa M, Suekane T, Fukushima H, Itabe H, Jomura H et al (2006) Localization of oxidized phosphatidylcholine in nonalcoholic fatty liver disease: impact on disease progression. Hepatology 43:506–514

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki M, Kamei M, Itabe H, Yoneda K, Bando H, Kume N et al (2007) Oxidized phospholipids in the macula increase with age and in eyes with age-related macular degeneration. Mol Vis 13:772–778

    PubMed  CAS  Google Scholar 

  17. Akagi M, Kanata S, Mori S, Itabe H, Sawamura T, Hamanish C (2007) Possible involvement of the oxidized low-density lipoprotein/lectin-like oxidized low-density lipoprotein receptor-1 system in pathogenesis and progression of human osteoarthritis. Osteoarthr Cartil 15:271–290

    Article  Google Scholar 

  18. Naba I, Yoshikawa H, Sakoda S, Itabe H, Suzuki H, Kodama T, Yanagihara T (2000) Onion-bulb formation after a single compression injury in the macrophage scavenger receptor knockout mice. Exp Neurol 166:83–89

    Article  PubMed  CAS  Google Scholar 

  19. Palinski W, Hörkkö S, Miller E, Steinbrecher UP, Powell HC, Curtiss LK, Witztum JL (1996) Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. J Clin Invest 98:800–814

    Article  PubMed  CAS  Google Scholar 

  20. Binder CJ, Hörkkö S, Dewan A, Chang M-K, Kieu EP, Goodyear CS, Shaw PX, Palinski W, Witztum JL, Silverman GJ (2003) Pneumococcal vaccination decrease atheroscleostic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 9:736–743

    Article  PubMed  CAS  Google Scholar 

  21. Rosenfeld ME, Khoo JC, Miller E, Parthasarathy S, Parinski W, Witztum JL (1991) Macrophage-derived foam cells freshly isolated from rabbit atherosclerotic lesions degrade modified lipoproteins, promote oxidation of low-density lipoproteins, and contain oxidation-specific lipid–protein adducts. J Clin Invest 87:90–99

    Article  PubMed  CAS  Google Scholar 

  22. Toyokuni S, Miyake N, Hiai H, Hagaiwara M, Kawakishi S, Osawa T, Uchida K (1995) The monoclonal antibody specific for the 4-hydroxy-2-nonenal histidine adduct. FEBS Lett 359:189–191

    Article  PubMed  CAS  Google Scholar 

  23. Uchida K, Kanematsu M, Sakai K, Matsuda T, Hattori N, Mizuno Y et al (1998) Protein-bound acrolein: potential markers for oxidative stress. Proc Natl Acad Sci U S A 95:4882–4887

    Article  PubMed  CAS  Google Scholar 

  24. Kawai Y, Saito A, Shibata N, Kobayashi M, Yamada S, Osawa T et al (2003) Covalent binding of oxidized cholesteryl esters to protein: implications for oxidative modification of low density lipoprotein and atherosclerosis. J Biol Chem 278:21040–21049

    Article  PubMed  CAS  Google Scholar 

  25. Haberland ME, Fong D, Cheng L (1988) Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241:215–218

    Article  PubMed  CAS  Google Scholar 

  26. Kotani K, Maekawa M, Kanno T, Kondo A, Toda N, Manabe M (1994) Distribution of immunoreactive malondialdehyde-modified low-density lipoprotein in human serum. Biochim Biophys Acta 1215:121–125

    PubMed  CAS  Google Scholar 

  27. Ichihashi K, Osawa T, Toyokuni S, Uchida K (2001) Endogenous formation of protein adducts with carcinogenic aldehydes: implications for oxidative stress. J Biol Chem 276:23903–23913

    Article  PubMed  CAS  Google Scholar 

  28. Holvoet P, Perez G, Zhao Z, Brouwers E, Bernar H, Collen D (1995) Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. J Clin Invest 95:2611–2619

    Article  PubMed  CAS  Google Scholar 

  29. Holvoet P, Macy E, Landeloos M, Jones D, Jenny NS, Van de Werf F, Tracy RP (2006) Analytical performance and diagnostic accuracy of immunometric assays for the measurement of circulating oxidized LDL. Clin Chem 52:760–764

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi K, Kishi M, Atsumi T, Bertolaccini ML, Makino H, Sakairi N, Yamamoto I, Yasuda T, Khamashta MA, Hughes GRV, Koike T, Voelker DR, Matsuura E (2003) Circulating oxidized LDL forms complexes with β2-glycoprotein I: implication as an atherogenic autoantigen. J Lipid Res 44:716–726

    Article  PubMed  CAS  Google Scholar 

  31. Kobayashi K, Tada K, Itabe H, Ueno T, Liu PH, Tsutsumi A, Kuwana M, Yasuda T, Shoenfeld Y, de Groot PG, Matsuura E (2007) Distinguished effects of antiphospholipid antibodies and anti-oxidized LDL antibodies on oxidized LDL uptake by macrophages. Lupus 16:929–938

    Article  PubMed  CAS  Google Scholar 

  32. Matsuura E, Kobayashi K, Tabuchi M, Lopez LR (2006) Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Prog Lipid Res 45:466–486

    Article  PubMed  CAS  Google Scholar 

  33. Chang MK, Binder CJ, Torzewski M, Witztum JL (2002) C-reactive protein binds to both oxidized LDL and apoptotic cells through recognition of a common ligand: phosphorylcholine of oxidized phospholipids. Proc Natl Acad Sci U S A 99:13043–13048

    Article  PubMed  CAS  Google Scholar 

  34. Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM (1990) Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 85:1260–1266

    Article  PubMed  CAS  Google Scholar 

  35. Ishikawa K, Navab M, Leitinger N, Fogelman AM, Lusis AL (1997) Induction of heme oxygenase-1 inhibits monocyte transmigration induced mildly oxidized LDL. J Clin Invest 100:1209–1216

    Article  PubMed  CAS  Google Scholar 

  36. Van Lenten BJ, Wagner AC, Navab M, Fogelman AM (2001) Oxidized phospholipids induce changes in hepatic paraoxonase and apoJ but monocyte chemoattractant protein-1 via interleukin-6. J Biol Chem 276:1923–1929

    Article  PubMed  Google Scholar 

  37. Walton KA, Cole AL, Yeh M, Subbanagounder G, Krutzik SR, Modlin RL et al (2003) Specific phospholipid oxidation products inhibit ligand activation of toll-like receptors 4 and 2. Arterioscler Thromb Vasc Biol 23:1197–1203

    Article  PubMed  CAS  Google Scholar 

  38. Watson AD, Leitinger N, Navab M, Faull KF, Hörkkö S, Witztum JL et al (1997) Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interaction and evidence for their presence in vivo. J Biol Chem 272:13597–13607

    Article  PubMed  CAS  Google Scholar 

  39. Watson AD, Subbanagounder G, Welsbie DS, Faull KF, Navab M, Jung ME et al (1999) Structural identification of novel pro-inflammatory epoxyisoprostane phospholipid in mildly oxidized low density lipoprotein. J Biol Chem. 274:24787–24798

    Article  PubMed  CAS  Google Scholar 

  40. Podrez EA, Poliakov E, Zhongzhou S, Zhang R, Deng Y, Sun M et al (2002) Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36. J Biol Chem 277:38503–38516

    Article  PubMed  CAS  Google Scholar 

  41. Friedman P, Hörkkö S, Steinberg D, Witztum JL, Dennis EA (2002) Correlation of antiphospholipid antibody recognition with the structure of synthetic oxidized phospholipids. Importance of Schiff base formation and aldol condensation. J Biol Chem 277:7010–7020

    Article  PubMed  CAS  Google Scholar 

  42. Stremler KE, Stafforini DM, Prescott SM, Zimmerman GA, McIntyre TM (1989) An oxidized derivative of phosphatidylcholine is a substrate for the platelet-activating factor acetylhydrolase from human plasma. J Biol Chem 264:5331–5334

    PubMed  CAS  Google Scholar 

  43. Nabav M, Berliner JA, Sabbanagounder G, Hama S, Lusis AJ, Castellani LW, Reddy S, Shih D, Shi W, Watson AD, Van Lenten BJ, Vora D, Fogelman AM (2001) HDL and the inflammatory response induced by LDL-derived oxidized phospholipids. Arterioscler Thromb Vasc Biol 21:481–488

    Google Scholar 

  44. Zalewski A, Macphee C (2005) Role of lipoprotein-associated phospholipase A2 in atherosclerosis: biology, epidemiology, and possible therapeutic target. Arterioscler Thromb Vasc Biol 25:923–931

    Article  PubMed  CAS  Google Scholar 

  45. Itabe H, Yamamoto H, Imanaka T, Shimamura K, Uchiyama H et al (1996) Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J Lipid Res 37:45–53

    PubMed  CAS  Google Scholar 

  46. Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otuska M et al (2001) Oxidized low density lipoprotein relates to plaque destabilization in human coronary atherosclerotic lesions. Circulation 103:1955–1960

    PubMed  CAS  Google Scholar 

  47. Miyazaki H, Matsuoka H, Itabe H, Usui M, Ueda S, Okuda S et al (2000) Hemodialysis impairs endothelial function via oxidative stress. Effects of vitamin E-coated dialyzer. Circulation 101:1002–1006

    PubMed  CAS  Google Scholar 

  48. Nishi K, Itabe H, Uno M, Kitazato KT, Horiguchi H, Shinno K, Nagahiro S (2002) Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol 22:1649–1654

    Article  PubMed  CAS  Google Scholar 

  49. Uno M, Kitasato K, Nishi K, Itabe H, Nagahiro S (2003) Elevation of plasma oxidized LDL in acute cerebral infarction. J Neurol Neurosurg Psychiatry 74:312–316

    Article  PubMed  CAS  Google Scholar 

  50. Itabe H, Hosoya R, Karasawa K, Jimi S, Saku K, Takebayashi S et al (1999) Metabolism of oxidized phosphatidylcholines formed in oxidized low density lipoprotein by lecithin-cholesterol acyltransferase. J Biochem 126:153–161

    PubMed  CAS  Google Scholar 

  51. Penny WF, Ben-Yehuda O, Kuroe K, Long J, Bond A, Bhargava V, Peterson JF, McDaniel M, Julicano J, Witztum JL, Ross J Jr, Peterson KL (2001) Improvement of coronary artery endothelial dysfunction with lipid-lowering therapy: heterogeneity of segmental response and correlation with plasma-oxidized low density lipoprotein. J Am Coll Cardiol 37:766–774

    Article  PubMed  CAS  Google Scholar 

  52. Fang JC, Kinlay S, Bhargava V, Hikita H, Witztum JL, Selwyn AP, Ganz P (2006) Circulating autoantibodies to oxidized LDL correlate with impaired coronary endothelial function after cardiac transplantation. Arterioscler Thromb Vasc Biol 26:2044–2048

    Google Scholar 

  53. Tsimikas S, Witzutum JL, Miller ER, Sasiela WJ, Szarek M, Olsson AG, Schwartz GG (2004) High-dose atorvastatin reduces total plasma levels of oxidized phospholipids and immune complexes present on apolipoprotein B-100 in patients with acute coronary syndromes in the MIRACL trial. Circulation 110:1406–1412

    Article  PubMed  CAS  Google Scholar 

  54. Tsimikas S, Lau HK, Han K-R, Shortal B, Miller ER, Segev A, Curtiss LK, Witztum JL, Strauss BH (2004) Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a). Short-term and long-term immunologic responses to oxidized low-density lipoprotein. Circulation 109:3164–3170

    Article  PubMed  CAS  Google Scholar 

  55. Tsimikas S, Bergmark C, Beyer RW, Patel R, Pattison J, Miller E, Juliano J, Witztum JL (2003) Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a): short-term and long-term immunologic responses to oxidized low-density lipoprotein. J Am Coll Cardiol 41:360–370

    Article  PubMed  CAS  Google Scholar 

  56. Tanaga K, Bujo H, Inoue M, Mikami K, Kotani K, Takahashi K, Kanno T, Saito Y (2002) Increased circulating malondialdehyde-modified LDL levels in patients with coronary artery diseases and their association with peak sizes of LDL particles. Arterioscler Thromb Vasc Biol 22:662–666

    Article  PubMed  CAS  Google Scholar 

  57. Holvoet P, Donck J, Landeloos M, Brouwers E, Luijtens K, Arnout J, Lasaffre E, Vanrenterghem Y, Collen D (1996) Correlation between oxidized low density lipoproteins and von Willebrand factor in chronic renal failure. Thromb Haemost 76:663–669

    PubMed  CAS  Google Scholar 

  58. Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, Collen D, Muls E, Van de Werf F (2001) Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol 21:844–1848

    Article  PubMed  CAS  Google Scholar 

  59. Girona J, Manzanares JM, Marinón F, Cabré A, Heras M, Guardiola M, Ribalta J, Masana L (2008) Oxidized to non-oxidized lipoprotein rations are associated with aeteriosclerosis and the metabolic syndrome in diabetic patients. Nutr Metab Cardiovasc Dis 18:380–387

    Article  PubMed  CAS  Google Scholar 

  60. Naruko T, Ueda M, Ehara S, Itoh A, Haze K, Shirai N, Ikura Y, Ohsawa M, Itabe H, Kobayashi Y, Yamagishi H, Yoshiyama M, Yoshikawa J, Becker AE (2006) Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis. Arterioscler Thromb Vasc Biol 26:877–883

    Article  PubMed  CAS  Google Scholar 

  61. Itabe H (2003) Oxidized low-density lipoproteins: what is understood and what remains to be clarified. Biol Pharm Bull 26:1–9

    Article  PubMed  CAS  Google Scholar 

  62. Itabe H, Ueda M (2007) Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J Atheroscler Thromb 14:1–11

    PubMed  CAS  Google Scholar 

  63. Fyfe AI, Qiao J-H, Lusis AJ (1994) Immune-deficient mice develop typical atherosclerotic fatty streaks when fed an atherogenic diet. J Clin Invest 94:2516–2520

    Article  PubMed  CAS  Google Scholar 

  64. Shoji T, Nishizawa Y, Fukumoto M, Shimamura K, Kimura J, Kanda H, Emoto M, Kawagishi T, Morii H (2000) Inverse relationship between circulating oxidized low density lipoprotein (oxLDL) and anti-oxLDL antibody levels in healthy subjects. Atheroscler 148:171–178

    Article  CAS  Google Scholar 

  65. Caligiuri G, Nicoletti A, Poirer B, Hansson GK (2002) Protestive immunity against atherosclerosis carried by B cells of hypercholesterolemic mice. J Clin Invest 109:745–753

    PubMed  CAS  Google Scholar 

  66. Ishigaki Y, Katagiri H, Gao J, Yamada T, Imai J, Uni K, Hasegawa Y, Kaneko K, Ogihara T, Ishihara H, Sato Y, Takikawa K, Nishimichi N, Matsuda H, Sawamura T, Oka Y (2008) Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis. Circulation 118:75–83

    Article  PubMed  CAS  Google Scholar 

  67. Obama T, Kato R, Masuda Y, Takahashi K, Aiuchi T, Itabe H (2007) Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics 7:2132–2141

    Article  PubMed  CAS  Google Scholar 

  68. Podrez EA, Schmitt D, Hoff HF, Hazen SL (1999) Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest 103:1547–1560

    Article  PubMed  CAS  Google Scholar 

  69. van Leeuwen M, Gijbels MJJ, Duijvestijn A, Smook M, van de Gaar MJ, Heeringa P, de Winther MPJ, Tervaert LWC (2008) Accumulation of myeloperoxidase-positive neutrophils in atherosclerotic lesion in LDLR−/− mice. Arterioscler Thromb Vasc Biol 28:84–89

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Itabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itabe, H. Oxidative Modification of LDL: Its Pathological Role in Atherosclerosis. Clinic Rev Allerg Immunol 37, 4–11 (2009). https://doi.org/10.1007/s12016-008-8095-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-008-8095-9

Keywords

Navigation