Skip to main content

Endothelial Function and Physical Exercise: A Key to Cardiovascular Protection?

  • Chapter
  • First Online:
Exercise, Sports and Hypertension

Abstract

Endothelial dysfunction is a complex alteration of the endothelium homeostasis, mainly caused by reduced nitric oxide (NO) availability and increased oxidative stress, and characterized by the presence of a pro-inflammatory state associated with impaired vasodilation and progressive vascular damage, leading to an increased risk of cardiovascular disease. In this comprehensive review we explore the association between endothelial dysfunction and physical activity, focusing on the possible beneficial role of physical training on endothelial function and analyzing the possible differential effect induced by age and type of physical training. The available evidence shows that physical activity can improve endothelium-dependent vasodilation both in healthy subjects and in patients with cardiovascular risk factors or cardiovascular disease, independently from age. This effect is more evident in subjects who engage in high-intensity physical training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-NT:

3-Nitrotyrosine

8-OHdG:

8-Hydroxy-2-deoxyguanosine

AP-1:

Activator protein 1

AT-II:

Angiotensin II

CAD:

Coronary artery disease

EDHF:

Endothelium derived hyperpolarizing factor

ET-1:

Endothelin-1

FBF:

Forearm blood flow

FGF-β:

Fibroblast growth factor β

FMD:

Flow-mediated dilation

GTN:

Glyceryl trinitrate

HF:

Heart failure

HIIT:

High intensity interval training

IL-1:

Interleukin-1

IL-6:

Interleukin-6

IMT:

Intima–media thickness

MCP-1:

Monocyte chemoattractant protein-1

MDA-LDL:

Malondialdehyde-modified LDL

mtROS:

Mithochondrial reactive oxygen species

NADPH:

Nicotinamide adenine dinucleotide phosphate

NO:

Nitric oxide

PBF:

Peripheral blood flow

PDGF:

Platelet-derived growth factor

RAAS:

Renin–angiotensin–aldosterone system

ROS:

Reactive oxygen species

TGF-β:

Transforming growth factor beta

TNF-α:

Tumor necrosis factor α

TOSC:

Total oxyradical scavenging capacity

VCAM-1:

Vascular cell adhesion molecule 1

References

  1. Taddei S. Endothelium-dependent vasodilation in hypertensive patients. Endothelium. 1996;4:1–9.

    Article  CAS  Google Scholar 

  2. Rajendran P, et al. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9:1057–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ghiadoni L, Taddei S, Virdis A. Hypertension and endothelial dysfunction: therapeutic approach. Curr Vasc Pharmacol. 2011;10:42–60.

    Article  Google Scholar 

  4. Granger DN, Rodrigues SF, Yildirim A, Senchenkova EY. Microvascular responses to cardiovascular risk factors. Microcirculation. 2010;17:192–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guzik TJ, Touyz RM. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension. 2017;70:660–7.

    Article  CAS  PubMed  Google Scholar 

  6. Xu S, Touyz RM. Reactive oxygen species and vascular remodelling in hypertension: still alive. Can J Cardiol. 2006;22:947–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Davies PF, Remuzzi A, Gordon EJ, Dewey CF, Gimbrone MA. Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci U S A. 1986;83:2114–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Von Offenberg Sweeney N, et al. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochem Biophys Res Commun. 2005;329:573–82.

    Article  CAS  Google Scholar 

  9. Kuchan MJ, Frangos JA. Shear stress regulates endothelin-1 release via protein kinase C and cGMP in cultured endothelial cells. Am J Physiol Heart Circ Physiol. 1993;264:H150.

    Article  CAS  Google Scholar 

  10. Hendrickson RJ, et al. Sustained pulsatile flow regulates endothelial nitric oxide synthase and cyclooxygenase expression in co-cultured vascular endothelial and smooth muscle cells. J Mol Cell Cardiol. 1999;31:619–29.

    Article  CAS  PubMed  Google Scholar 

  11. Gerszten RE, et al. Adhesion of monocytes to vascular cell adhesion molecule-1-transduced human endothelial cells: implications for atherogenesis. Circ Res. 1998;82:871–8.

    Article  CAS  PubMed  Google Scholar 

  12. Merten M, Chow T, Hellums JD, Thiagarajan P. A new role for P-selectin in shear-induced platelet aggregation. Circulation. 2000;102:2045–50.

    Article  CAS  PubMed  Google Scholar 

  13. Cahill PA, Redmond EM. Vascular endothelium—gatekeeper of vessel health. Atherosclerosis. 2016;248:97–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsieh HJ, Liu CA, Huang B, Tseng AH, Wang DL. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci. 2014;21:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res. 1992;70:593–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ferrari R. RAAS inhibition and mortality in hypertension. Glob Cardiol Sci Prac. 2013;2013:269–78.

    Google Scholar 

  17. Osborn JW, Fink GD. Region-specific changes in sympathetic nerve activity in angiotensin II-salt hypertension in the rat. Exp Physiol. 2010;95:61–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rajagopalan S, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation: contribution to alterations of vasomotor tone. J Clin Investig. 1996;97:1916–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Celermajer DS, et al. Passive smoking and impaired endothelium-dependent arterial dilatation in healthy young adults. N Engl J Med. 1996;334:150–5.

    Article  CAS  PubMed  Google Scholar 

  20. Ghiadoni L, et al. Effect of acute blood pressure reduction on endothelial function in the brachial artery of patients with essential hypertension. J Hypertens. 2001;19:547–51.

    Article  CAS  PubMed  Google Scholar 

  21. Goodfellow J, et al. Endothelium and inelastic arteries: an early marker of vascular dysfunction in non-insulin dependent diabetes. Br Med J. 1996;312:744–5.

    Article  CAS  Google Scholar 

  22. Landmesser U, Drexler H. The clinical significance of endothelial dysfunction. Curr Opin Cardiol. 2005;20:547–51.

    Article  PubMed  Google Scholar 

  23. Celermajer DS, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet. 1992;340:1111–5.

    Article  CAS  PubMed  Google Scholar 

  24. Masi S, et al. The importance of endothelial dysfunction in resistance artery remodelling and cardiovascular risk. Cardiovasc Res. 2020;116:429–37.

    CAS  PubMed  Google Scholar 

  25. Kosmopoulos M, et al. The relationship between telomere length and putative markers of vascular ageing: a systematic review and meta-analysis. Mech Ageing Dev. 2021;201:111604.

    Article  PubMed  CAS  Google Scholar 

  26. Chiriacò M, et al. Inflammation and vascular ageing: from telomeres to novel emerging mechanisms. High Blood Press Cardiovasc Prev. 2019;26:321–9.

    Article  PubMed  Google Scholar 

  27. Fichtlscherer S, Breuer S, Zeiher AM. Prognostic value of systemic endothelial dysfunction in patients with acute coronary syndromes: further evidence for the existence of the ‘vulnerable’ patient. Circulation. 2004;110:1926–32.

    Article  PubMed  Google Scholar 

  28. Patti G, et al. Impaired flow-mediated dilation and risk of restenosis in patients undergoing coronary stent implantation. Circulation. 2005;111:70–5.

    Article  PubMed  Google Scholar 

  29. Bugiardini R, Manfrini O, Pizzi C, Fontana F, Morgagni G. Endothelial function predicts future development of coronary artery disease: a study of women with chest pain and normal coronary angiograms. Circulation. 2004;109:2518–23.

    Article  PubMed  Google Scholar 

  30. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115:459–67.

    Article  PubMed  Google Scholar 

  31. Juonala M, et al. Interrelations between brachial endothelial function and carotid intima-media thickness in young adults: the cardiovascular risk in young Finns study. Circulation. 2004;110:2918–23.

    Article  PubMed  Google Scholar 

  32. Heitzer T, Baldus S, Von Kodolitsch Y, Rudolph V, Meinertz T. Systemic endothelial dysfunction as an early predictor of adverse outcome in heart failure. Arterioscler Thromb Vasc Biol. 2005;25:1174–9.

    Article  CAS  PubMed  Google Scholar 

  33. Fischer D, et al. Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. Eur Heart J. 2005;26:65–9.

    Article  CAS  PubMed  Google Scholar 

  34. Katz SD, et al. Vascular endothelial dysfunction and mortality risk in patients with chronic heart failure. Circulation. 2005;111:310–4.

    Article  PubMed  Google Scholar 

  35. Colombo PC, et al. Endothelial cell activation in patients with decompensated heart failure. Circulation. 2005;111:58–62.

    Article  CAS  PubMed  Google Scholar 

  36. Roccella EJ. The sixth report of the joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med. 1997;157:2413–46.

    Article  Google Scholar 

  37. Delp MD, McAllister RM, Laughlin MH. Exercise training alters endothelium-dependent vasoreactivity of rat abdominal aorta. J Appl Physiol. 1993;75:1354–63.

    Article  CAS  PubMed  Google Scholar 

  38. Wang J, Wolin MS, Hintze TH. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res. 1993;73:829–38.

    Article  CAS  PubMed  Google Scholar 

  39. Franzoni F, et al. Physical activity, plasma antioxidant capacity, and endothelium-dependent vasodilation in young and older men. Am J Hypertens. 2005;18:510–6.

    Article  CAS  PubMed  Google Scholar 

  40. Goto C, et al. Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation. 2003;108:530–5.

    Article  PubMed  Google Scholar 

  41. Leaf DA, Kleinman MT, Hamilton M, Deitrick RW. The exercise-induced oxidative stress paradox: the effects of physical exercise training. Am J Med Sci. 1999;317:295.

    Article  CAS  PubMed  Google Scholar 

  42. Ji LL. Exercise-induced modulation of antioxidant defense. Ann N Y Acad Sci. 2002;959:82–92.

    Article  CAS  PubMed  Google Scholar 

  43. Ji LL. Antioxidants and oxidative stress in exercise. In: Proceedings of the Society for Experimental Biology and Medicine, vol. 222. Oxford: Blackwell; 1999. p. 283–92.

    Google Scholar 

  44. Hallmark R, et al. The effect of exercise intensity on endothelial function in physically inactive lean and obese adults. PLoS One. 2014;9:e85450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Streese L, et al. High-intensity interval training modulates retinal microvascular phenotype and DNA methylation of p66Shc gene: a randomized controlled trial (EXAMIN AGE). Eur Heart J. 2020;41:1514–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation. 1991;84:1589–96.

    Article  CAS  PubMed  Google Scholar 

  47. Hambrecht R, et al. Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation. 1998;98:2709–15.

    Article  CAS  PubMed  Google Scholar 

  48. Hambrecht R, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342:454–60.

    Article  CAS  PubMed  Google Scholar 

  49. Niebauer J, et al. Impact of intensive physical exercise and low-fat diet on collateral vessel formation in stable angina pectoris and angiographically confirmed coronary artery disease. Am J Cardiol. 1995;76:771–5.

    Article  CAS  PubMed  Google Scholar 

  50. Schuler G, et al. Regular physical exercise and low-fat diet effects on progression of coronary artery disease. Circulation. 1992;86:1–11.

    Article  CAS  PubMed  Google Scholar 

  51. Ferguson RJ, et al. Effect of physical training on treadmill exercise capacity, collateral circulation and progression of coronary disease. Am J Cardiol. 1974;34:764–9.

    Article  CAS  PubMed  Google Scholar 

  52. Higashi Y, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999;100:1194–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Chiriacò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiriacò, M., Masi, S., Virdis, A., Taddei, S. (2022). Endothelial Function and Physical Exercise: A Key to Cardiovascular Protection?. In: Palatini, P., Agabiti-Rosei, E., Mancia, G. (eds) Exercise, Sports and Hypertension. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-07958-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07958-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07957-3

  • Online ISBN: 978-3-031-07958-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics