Skip to main content
Log in

Neurochirurgische Therapie maligner Gliome

Surgical intervention in patients with malignant glioma

  • Themenschwerpunkt
  • Published:
Wiener Medizinische Wochenschrift Aims and scope Submit manuscript

Summary

Glialtumors occur at an incidence from 2 to 10/ 100.000 (Japan vs. Sweden) and building up to 50 % of all patients suffering from braintumors. 50 % of those are again malignant gliomas Grade III and Grade IV. Despite all therapeutic approaches the median survival for glioblastomas is 15 months and for anaplastic gliomas Grade III 30 months. After diagnosis, preferably by MRI, a neurosurgical procedure is performed under microsurgical guidelines mostly by means of neuronavigation and intraoperative guidance. Depending on the preoperative diagnosis and localisation of the pathologic lesion an open craniotomy or a stereotactic biopsy is performed. This allows the histological verification and decompression and cytoreduction. A gros total safe removal preserving neurological function is the most important goal of surgery. Tumor removal in eloquent eras such as speech area is performed under local anesthesia as an awake operation. Age, Karnofsky performance status, histology as well as radical removal have a significant influence on overall survival. Adjuvant radiotherapy and chemotherapy with Temozolemide have further improved the outcome significantly. The 2-year survival has reached 28 % in most recent studies. Further experimental therapies in controlled trials, such as intratumoral convection-enhanced instillation of immuntoxins and radiopeptids, photodynamic therapy and direct instillation of new formulations of chemotherapeutic drugs (e. g. nanoparticles) are promising new approaches. New developments in the treatment of patients harboring malignant braintumors allow an individual neurooncological treatment concept to be established to enhance overall survival and quality of life.

Zusammenfassung

Hirneigene Tumore bilden fast 50 % aller primären Hirntumore mit einer Inzidenz von 2–10/100.000 (Japan vs. Schweden) mit einem Altersgipfel um 40–60 Jahre. Davon stellen maligne Gliome WHO Grad III und IV wiederum mit 50 % den größten Teil. Trotz aller therapeutischer Maßnahmen liegt die mittlere Überlebenszeit für Glioblastoma multiforme WHO IV bei 15 Monaten und für anaplastische Gliome WHO Grad III bei 2,5 Jahren. Nach Diagnosestellung mittels MR und/oder CT wird der neurochirurgische Eingriff unter mikrochirurgischen Bedingungen und größtenteils mit intraoperativer Neuronavigation und intraoperativer Bildgebung durchgeführt. In Abhängigkeit von Lokalisation und präoperativer Diagnosestellung wird entweder eine stereotaktische Biopsie oder eine Kraniotomie durchgeführt. Dadurch kann die Diagnose histologisch gesichert werden und eine Dekompression neurogener Strukturen und Zytoreduktion erzielt werden. Eine maximale (radikale) Tumorresektion bei maximaler Erhaltung der Funktionen ist das primäre Ziel und erhöht signifikant die Überlebenszeit. Bei Lokalisationen in funktionellen Arealen z. B. Sprache, erfolgt die Operation unter den Bedingungen der Wachoperation. Alter, Karnofsky-Status, histologischer Grad (WHO) als auch das Ausmaß der Resektion bestimmen signifikant das Outcome. Adjuvante Radiotherapie und Chemotherapie mit Temozolemide hat weiteren positiven Einfluss, so konnte dadurch die 2 Jahresüberlebenszeit beim Glioblastomen in aktuellen Studien auf 28 % erhöht werden. Weitere experimentelle Therapien in kontrollierten Studien, wie die direkte intratumorale Hochflussinstillation von Immuntoxinen und Radionukleotiden, photodynamischen Therapie und direkte Instillation von neuen Formulationen von Chemotherapie (Nanopartikeln) sowie molekulare Analysen sind viel versprechende neue therapeutische Ansätze. Durch die neuen Entwicklungen kann heute für jeden Patienten ein individuelles neuroonkologisches Therapie-konzept erstellt werden, um das besten Ergebnis bezüglich Überleben und Lebensqualität zu erreichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF et al. (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95: 190–198

    PubMed  CAS  Google Scholar 

  • Finlay JL, Wisoff JH (1999) The impact of extent of resection in the management of malignant gliomas of childhood. Childs Nerv Syst 15(11–12): 786–788

    Article  PubMed  CAS  Google Scholar 

  • Obwegeser A, Ortler M, Seiwald M, Ulmer H, Kostron H (1995) Therapy of glioblastoma multiforme: a cumulative experience of 10 years. Acta Neurochir (Wien) 137(1–2): 29–33

    Article  CAS  Google Scholar 

  • Nieder C, Grosu AL, Astner S, Molls M (2005) Treatment of unresectable glioblastoma multiforme. Anticancer Res 25(6C): 4605–4610

    PubMed  CAS  Google Scholar 

  • Yoshikawa K, Kajiwara K, Morioka J, Fujii M, Tanaka N, Fujisawa H, Kato S, Nomura S, Suzuki M (2005) Improvement of functional outcome after radical surgery in glioblastoma patients: the efficacy of a navigationguided fence-post procedure and neurophysiological monitoring. J Neurooncol 29: 1–7

    Google Scholar 

  • Roessler K, Ungersboeck K, Dietrich W, Aichholzer M, Hittmeir K, Matula C, Czech T, Koos WT (1997) Frameless stereotactic guided neurosurgery: clinical experience with an infrared based pointer device navigation system. Acta Neurochir (Wien) 139(6): 551–559

    CAS  Google Scholar 

  • Roessler K, Ungersboeck K, Aichholzer M, Dietrich W, Goerzer H, Matula C, Czech T, Koos WT (1998) Frameless stereotactic lesion contour-guided surgery using a computer-navigated microscope. Surg Neurol 49(3): 282–288; discussion 288–289

    Article  PubMed  CAS  Google Scholar 

  • Roessler K, Ungersboeck K, Aichholzer M, Dietrich W, Czech T, Heimberger K, Matula C, Koos WT (1998) Image-guided neurosurgery comparing a pointer device system with a navigating microscope: a retrospective analysis of 208 cases. Minim Invasive Neurosurg 41(2): 53–57

    Article  PubMed  CAS  Google Scholar 

  • Roessler K, Czech T, Dietrich W, Ungersboeck K, Nasel C, Hainfellner JA, Koos WT (1998) Frameless stereotactic-directed tissue sampling during surgery of suspected low-grade gliomas to avoid histological undergrading. Minim Invasive Neurosurg 41(4): 183–186

    PubMed  CAS  Google Scholar 

  • Sala F, Lanteri P (2003) Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci 47(2): 79–88

    PubMed  CAS  Google Scholar 

  • Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100(3): 369–375

    PubMed  Google Scholar 

  • Romstock J, Fahlbusch R, Ganslandt O, Nimsky C, Strauss C (2002) Localisation of the sensorimotor cortex during surgery for brain tumours: feasibility and waveform patterns of somatosensory evoked potentials. J Neurol Neurosurg Psychiatry 72(2): 221–229

    Article  PubMed  CAS  Google Scholar 

  • Meyer FB, Bates LM, Goerss SJ, Friedman JA, Windschitl WL, Duffy JR, Perkins WJ, O'Neill BP (2001) Awake craniotomy for aggressive resection of primary gliomas located in eloquent brain. Mayo Clin Proc 76(7): 677–687

    Article  PubMed  CAS  Google Scholar 

  • Taylor MD, Bernstein M (1999) Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg 90(1): 35–41

    Article  PubMed  CAS  Google Scholar 

  • Roessler K, Donat M, Lanzenberger R, Novak K, Geissler A, Gartus A, Tahamtan AR et al. (2005) Evaluation of preoperative high magnetic field motor functional MRI (3 Tesla) in glioma patients by navigated electrocortical stimulation and postoperative outcome. J Neurol Neurosurg Psychiatry 76(8): 1152–1157

    Article  PubMed  CAS  Google Scholar 

  • Grosu AL, Weber WA, Riedel E, Jeremic B, Nieder C, Franz M, Gumprecht H et al. (2005) L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63(1): 64–74

    Article  PubMed  CAS  Google Scholar 

  • Matula C, Rossler K, Reddy M, Schindler E, Koos WT (1998) Intraoperative computed tomography guided neuronavigation: concepts, efficiency, and work flow. Comput Aided Surg 3(4): 174–182

    Article  PubMed  CAS  Google Scholar 

  • Claus EB, Horlacher A, Hsu L, Schwartz RB, Dello-Iacono D, Talos F, Jolesz FA, Black PM (2005) Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer 103(6): 1227–1233

    Article  PubMed  Google Scholar 

  • Laws ER et al. (2003) Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project. J Neurosurg 99: 467–473

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herwig Kostron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostron, H., Rössler, K. Neurochirurgische Therapie maligner Gliome. Wien Med Wochenschr 156, 338–341 (2006). https://doi.org/10.1007/s10354-006-0305-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10354-006-0305-6

Keywords

Schlüsselwörter

Navigation