Recognising the unique form presented by the South China PTBM thrombolite, we propose a new taxon to define it.
Phylum, Class, Order and Family: unknown.
Genus: Calcilobes, n. gen.
Etymology: Calcilobes is named for the lobate fabric of the solid (unchambered) micritic–microsparitic structure, made of calcium carbonate.
Type species: Calcilobes wangshenghaii, n. sp.
Diagnosis: Masses of circular to irregularly elliptical blobs of solid micritic–microsparitic calcium carbonate; blobs are 0.1–0.2 mm in largest dimension, as seen in thin section (Figs. 3, 4, 5, 6). Blobs are mostly amalgamated as a constructed lobate framework of branches, layers and clusters ca. 1 – 20 mm in size, enclosing small cavities with geopetal sediments and cements. The lobate framework is accompanied by individual subspherical blobs of the same texture, size and shape, that occur in two locations: (1) as distinct structures surrounded by the carbonate mudstone matrix of the deposit (Figs. 6, 8); and (2) as peloids in geopetal cavities within the lobate framework (Fig. 7), that may have been washed into the cavities. We note that individual blobs in the matrix may be fortuitous tangential cross sections of margins of accumulated masses. Nevertheless, in some samples, these separate blobs show gradation from the un-clotted matrix (Fig. 9), leading to the possibility that there is a genetic relationship between the matrix sediment and the formation of C. wangshenghaii, discussed later.
Despite their interpreted original solid texture, blobs are most commonly preserved with micritic–microsparitic outlines up to 0.1 mm thick mm thick, and sparite interiors, viewed here as a diagenetic aggrading recrystallisation of the interior, leaving the rim portion as the original, or close to original, texture. In cases of pervasive re-crystallisation, the rim is completely altered to sparite so that the lobate structure is a fully sparitic mass within the enclosing micrite matrix that appears unaltered.
Calcilobes wangshenghaii, n. sp.
Etymology: wangshenghaii is named in memory of Shenghai Wang, of Southwest Petroleum Institute (SWPI), Nanchong, Sichuan, China (that subsequently became Southwest Petroleum University in Chengdu). Shenghai Wang was born on 12 September 1962 in Fengxian, Shanxi Province and later was a PhD student of Prof Jiasong Fan, Beijing, the doyen of Permian reef work in China. Wang subsequently worked in SWPI on a range of petroleum-related projects on Permian reefs in Sichuan and Chongqing. Wang’s publication of the first full description of the lobate microbialite was in 1994 when he was 32 years old; however, in October 1995, he sadly died. Descriptions and interpretations presented in this study are thus given in honour of that first account.
Types: NIGP176542, thin section (holotype), NIGP176543, sample from which holotype was made; NIGP176544 thin section (paratype), NIGP176545, sample from which paratype was made. Total 4 specimens, stored at the Nanjing Institute of Geology, Nanjing, China.
Type locality: Holotype and paratype were collected from Laolongdong site, 15 km NE of Beibei city, Chongqing SAR, South China, (Fig. 1) from upper part of the microbialite at 29° 53′ 26.45″ N, 106° 30′ 48.55″ E. The microbialite ranges from latest Permian Hindeodus praeparvus conodont zone to earliest Triassic Hindeodus parvus conodont zone, thus crosses from Palaeozoic into Mesozoic strata. C. wangshenghaii holotype and paratype samples are not tied precisely to conodont stratigraphy, but are most likely from a basal Triassic horizon.
Diagnosis: Because Calcilobes is a new genus and C. wangshenghaii the only current species, the diagnosis is as above for Calcilobes.
Description: As stated above for the Calcilobes diagnosis, the lobate architecture is embedded in largely unaltered micrite matrix. In some cases, shelly fossils are preserved in the matrix and in cavities within the microbial material (Figs. 4, 5, 7). Microbial margins are in direct contact with enclosing micritic matrix, which in some cases consists of two generations of micritic fill (Fig. 6), recrystallised areas of microbialite are commonly preserved as a thin microsparitic rim with the interior altered to sparite. In few examples, a thin inward-pointing layer of calcite crystals is present (Fig. 6b). Despite its pervasive alteration, ghosts of lobate fabric remain throughout the structure in most cases, allowing its nature to be identified (Fig. 3), in gradational transitions with better-preserved fabric in the same mass (Figs. 4, 5, 6, 7, 8). In extreme re-crystallisation, all internal structures are lost, even the microsparitic rim is replaced by sparite, but the lobate nature of the structure is still recognisable due to its lobate margins, thus forming a cast in normally unaltered micritic matrix. There is sporadic dolomitization of the recrystallised lobate structure and of the adjacent matrix. Overall, C. wangshenghaii built layers ca. 10–30 cm thick separated by small breaks, normally obscured by stylolites, but in some cases identified as erosion surfaces (Kershaw et al. 2012). Commonly, the layers are laminar in the lower part of the deposit, but become domed in the upper part, where a digitate form is commonly displayed (Fig. 2).
Remarks: C. wangshenghaii. occurs across a large part of the South China Block (see Xie et al. 2010, fig. 1 for distribution map of the microbialite). Holotype and paratype samples described here are of a partly digitate, partly amalgamated style of growth in the upper portion of the microbialite unit. The appearance of a thin-branched digitate form is the most common view, because most exposures show the structure in vertical section (compare Fig. 2a–c with Fig. 2d). However, Fig. 2f shows the material in transverse section where the amalgamation is well demonstrated. The amalgamated material shows the microbial structure very well. More field, hand specimen, thin section and SEM photographs from this facies are widely published, very good examples of which are in Ezaki et al. (2003, 2008).
C. wangshenghaii also contains ostracods, gastropods and microfossils trapped inside its structure (e.g., Yang et al. 2011), the microfossils are most commonly spherical objects ca 0.01 mm in diameter (see Kershaw et al., 2012, Fig. 4d). Also, in some places, tiny elongate chambered structures occur, named as “Polybessurus-like fossils” (PLFs) by Zhang et al. (2020b), and similar structures called Gakhumella by Wu et al. (2017). Hughes (2013, Fig. 3) placed Gakhumella in an intertidal to hypersaline environment, contrasting the subtidal setting of the PTBM. In the PTBMs, the structures called PLFs and Gakhumella may be the same fossil. However, these additional components are rare in the lobate fabrics, existing only as fragments that seem to have been deposited via currents on the surface of the microbialite as it grew; they are not components of frame building, so do not contribute to the taxonomic description of the microbialite presented here.
Comparisons with other similar microbial taxa are presented in Fig. 10, comparing C. wangshenghaii with Renalcis and Tarthinia. Renalcis forms small masses of chambered micritic structure with sparite infills; Tarthinia is likewise chambered (Lee et al. 2014) and forms small masses. Although at small scale, there are similarities between C. wangshenghaii and Renalcis/Tarthinia, the latter two do not form the complex arrangements that comprise individual blobs and the constructed frameworks with geopetal cavities seen in C. wangshenghaii.