Skip to main content

Advertisement

Log in

Microproblematica, calcareous algae, and microbialites at the Frasnian-Famennian boundary interval in the Šumbera section (Moravian Karst, Czech Republic) and their significance in the context of the Kellwasser Crisis

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Kellwasser Crisis represents one of the most severe extinction events in the Phanerozoic. The Šumbera section (Moravo-Silesian Basin, Moravian Karst) spans the Upper rhenana to Palmatolepis minuta minuta (or younger) conodont zones and corresponds to the upper part of a carbonate ramp with material derived from shallower areas. A rich association of calcareous algae, cyanobacteria, and microproblematica, comprising renalcids (Izhella), Girvanella, Rectangulina cf. tortuosa, Rothpletzella, “solenoporaceans”, “Keega”-like microfossils, udoteacean alga Paralitanaia, volvocean and radiospherid calcispheres, palaeoberesellids, Umbellina bella, and Wetheredella, is similar in diversity to associations known from China, Australia, Canada, and Belgium. The Šumbera section represents a unique locality where changes in shallow-water biota at the Frasnian-Famennian boundary are well calibrated by detailed conodont biostratigraphy. We track in detail the evolution of shallow-water biota and the features that are often discussed in the context of “anachronistic” facies, such as flourishing microbial structures, enhanced early marine cementation, and flat-pebble conglomerates. Some features which could be indicative of environmental stress such as flat-pebble conglomerates developed during the Frasnian part of the Kellwasser Crisis (Upper rhenana to linguiformis Zones), whereas a renalcid boom started at the Frasnian-Famennian boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antoshkina AI (1998) Organic buildups and reefs on the Palaeozoic carbonate platform margin, Pechora Urals, Russia. Sed Geol 118(1–4):187–211. https://doi.org/10.1016/S0037-0738(98)00012-8

    Article  Google Scholar 

  • Antoshkina AI (2006) Palaeoenvironmental implications of Palaeomicrocodium in Upper Devonian microbial mounds of the Chernyshev Swell, Timan-northern Ural Region. Facies 52(4):611–625. https://doi.org/10.1007/s10347-006-0083-z

    Article  Google Scholar 

  • Aretz M, Chevalier E (2007) After the collapse of stromatoporoid–coral reefs—the Famennian and Dinantian reefs of Belgium: much more than Waulsortian mounds. In: Álvaro JJ, Aretz M, Boulvain F, Munnecke A, Vachard D, Vennnin E (eds) Palaeozoic reefs and bioaccumulations: climatic and evolutionary controls. Geol Soc London Spec Publ 275:pp 163–188

  • Bábek O, Přikryl T, Hladil J (2007) Progressive drowning of carbonate platform in the Moravo-Silesian Basin (Czech Republic) before the Frasnian/Famennian event: facies, compositional variations and gamma-ray spectrometry. Facies 53(2):293–316. https://doi.org/10.1007/s10347-006-0095-8

    Article  Google Scholar 

  • Bond DPG, Zatoń M, Wignall PB, Marynowski L (2013) Evidence for shallow-water “Upper Kellwasser” anoxia in the Frasnian–Famennian reefs of Alberta, Canada. Lethaia 46:355–368

    Article  Google Scholar 

  • Bornemann JG (1886) Die Versteinerungen des Cambrischen Schichten-Systems der Insel Sardinien, nebst vergleichenden Untersuchungen über analoge Vorkomnisse aus andern Ländern. Erst Abt Ksl Leop-Carol Deut Akad Naturforsch 51:1–147

    Google Scholar 

  • Bourque P-A, Mamet B, Roux A (1981) Algues siluriennes du synclinorium de la Baie des Chaleurs, Québec, Canada. Rev Micropaléont 24(2):83–126

    Google Scholar 

  • Brett CE, McLaughlin PI, Histon K, Schindler E, Ferretti A (2012) Time-specific aspects of facies: state of the art, examples, and possible causes. Palaeogeogr Palaeoclimatol Palaeoecol 367–368:6–18. https://doi.org/10.1016/j.palaeo.2012.10.009

    Article  Google Scholar 

  • Buriánek D, Gilíková H, Nehyba S, Otava J (2007) Depositional environment and provenance of Lower Palaeozoic clastics in the Měnín-1 borehole SSE of Brno. Geol Výzk Mor Slez v roce 2006 14:46–47 (in Czech)

    Google Scholar 

  • Chuvashov BI (1965) Foraminifera and calcareous algae from the Upper Devonian of the western slope of the central and southern Urals. Akad. Nauk SSSR Geol Inst Trudy 74:8–153

    Google Scholar 

  • Chuvashov B, Riding R (1984) Principal floras of Palaeozoic marine calcareous algae. Palaeontology 27(3):487–500

    Google Scholar 

  • Copper P (2002) Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeogr Palaeoclimatol Palaeoecol 181(1–3):27–65. https://doi.org/10.1016/S0031-0182(01)00472-2

    Article  Google Scholar 

  • Doweld AB (2014) (2285–2286) Proposals to conserve the names Umbellina against Umbella and Umbellinaceae against Umbellaceae (fossil Charophyta. Taxon 63(2):441–442. https://doi.org/10.12705/632.38

    Article  Google Scholar 

  • Dricot E, Tsien HH (1977) Le nom du genre Rothpletzella Wood 1948 (algue calcaire paléozoïque) est légitime et correct. Mémoir de l’Institut Géologique, Université de Louvain 29:231–240

    Google Scholar 

  • Du YS, Gong YM, Zeng XW, Huang HW, Yang JH, Zhang Z, Huang ZQ (2008) Devonian Frasnian–Famennian transitional event deposits of Guangxi, south China and their possible tsunami origin. Sci China Ser D-Earth Sci 51(11):1570–1580

    Article  Google Scholar 

  • Edgell HS (2003) Upper Devonian Charophyta of western Australia. Micropaleontology 49(4):359–374. https://doi.org/10.1661/0026-2803(2003)049[0359:udcowa]2.0.co;2

    Article  Google Scholar 

  • Feist M, Liu J, Tafforeau P (2005) New insights into Palaeozoic charophyte morphology and phylogeny. Am J Bot 92(7):1152–1160. https://doi.org/10.3732/ajb.92.7.1152

    Article  Google Scholar 

  • Feng Q, Gong Y-M, Riding R (2010) Mid-Late Devonian calcified marine algae and cyanobacteria, South China. J Paleontol 84(4):569–587. https://doi.org/10.1017/S0022336000058340

    Article  Google Scholar 

  • Gereke M (2007) Die oberdevonische Kellwasser-Krise in der Beckenfazies von Rhenoherzynikum und Saxothuringikum (spätes Frasnium/frühestes Famennium, Deutschland). Kölner Forum Geol Paläont 17:1–228

    Google Scholar 

  • Gereke M, Schindler E (2012) “Time-specific facies” and biological crises—The Kellwasser Event interval near the Frasnian/Famennian boundary (Late Devonian). Palaeogeogr Palaeoclimatol Palaeoecol 367–368:19–29. https://doi.org/10.1016/j.palaeo.2011.11.024

    Article  Google Scholar 

  • Granier B, Dias-Brito D (2016) On the fossil alga Marinella lugeoni PFENDER, 1939, nom. cons., and its seven unfortunate avatars. Revision of the Juliette PFENDER Collection. Part 2. Revision of the Jesse Harlan JOHNSON Collection. Part 2. Carnets Geol 16(7):231–245

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, New York

    Google Scholar 

  • He L, Wang Y, Woods A, Li G, Yang H, Liau W (2012) Calcareous tubeworms as disaster forms after the end-Permian mass extinction in South China. Palaios 27(12):878–886. https://doi.org/10.2110/palo.2012.p12-022r

    Article  Google Scholar 

  • Héroux Y, Hubert C, Mamet B, Roux A (1977) Algues siluriennes de la Formation de Sayabec (Lac Matapédia, Québec). J Can Sci Terre 14(12):2865–2908

    Article  Google Scholar 

  • Hladil J (1983) Cyklická sedimentace v devonských karbonátech macošského souvrství. Zemní plyn a nafta XXVIII(1):1–14

    Google Scholar 

  • Hladil J, Kalvoda J (1993) Devonian boundary intervals of Bohemia and Moravia especially the Eifelian/Givetian and Frasnian/Famennian events with respect to the Silurian/Devonian and Devonian/Carboniferous boundaries. In: Narkiewicz M (ed) Global boundary events. Excursion guidebook, Warszawa, pp 29–75

    Google Scholar 

  • Hladil J, Krejci Z, Kalvoda J, Ginter M, Galle A, Berousek P (1991) Carbonate ramp environment of Kellwasser time-interval; Lesni lom, Moravia, Czechoslovakia. Bull de la Soc Belge de Géol 100(1–2):57–119

    Google Scholar 

  • Hladil J, Melichar R, Otava J, Galle A, Krs M, Man O, Pruner P, Cejchan P, Orel P (1999) The Devonian in the easternmost Variscides, Moravia: a holistic analysis directed towards comprehension of the original context. Abh Geol B-A Vienna 54:27–47

    Google Scholar 

  • Huang C, Gong Y (2016) Timing and patterns of the Frasnian–Famennian Event: evidence from high-resolution conodont biostratigraphy and event stratigraphy at the Yangdi section, Guangxi, South China. Palaeogeogr Palaeoclimatol Palaeoecol 448:317–338. https://doi.org/10.1016/j.palaeo.2015.10.031

    Article  Google Scholar 

  • Jarochowska E, Munnecke A (2014) The Paleozoic problematica Wetheredella and Allonema are two aspects of the same organism. Facies 60(2):651–662. https://doi.org/10.1007/s10347-014-0399-z

    Article  Google Scholar 

  • Jarochowska E, Hierl F, Vinn O, Munnecke A (2016) Reducing taxonomic noise in problematic fossils: revision of the incertae sedis genus Allonema based on shape analysis. Bull Geosci 91(1):97–110. https://doi.org/10.3140/bull.geosci.1588

    Article  Google Scholar 

  • Kalvoda J, Bábek O (2010) The Margins of Laurussia in Central and Southeast Europe and Southwest Asia. Gondwana Res 17(2–3):526–545. https://doi.org/10.1016/j.gr.2009.09.012

    Article  Google Scholar 

  • Kalvoda J, Melichar R, Bábek O, Leichmann J (2002) Late Proterozoic–Paleozoic tectonostratigraphic development and paleogeography of Brunovistulian Terrance and comparison with other terranes at the SE Margins of Baltica-Laurussia. J Czech Geol Soc 47(3–4):81–102

    Google Scholar 

  • Kalvoda J, Leichmann J, Bábek O, Melichar R (2003) Brunovistulian Terrane (Central Europe) and Istanbul Zone (NW Turkey): Late Proterozoic and Paleozoic tectonostratigraphic development and paleogeography. Geol Carpath 54(3):139–152

    Google Scholar 

  • Kaźmierczak J (1975) Colonial volvocales (Chlorophyta) from the Upper Devonian of Poland and their palaeoenvironmental significance. Acta Palaeont Pol 20(1):73–85

    Google Scholar 

  • Kaźmierczak J (1976) Volvocean nature of some Palaeozoic non-radiosphaerid calcispheres and parathuramminid “foraminifera”. Acta Palaeont Pol 21(3):245–258

    Google Scholar 

  • Kaźmierczak J (1981) The biology and evolutionary significance of Devonian volvoceans and their Precambrian relatives. Acta Palaeont Pol 26(3–4):299–337

    Google Scholar 

  • Kaźmierczak J, Kremer B (2005) Early post-mortem calcified Devonian acritarchs as a source of calcispheric structures. Facies 51(1):573–584. https://doi.org/10.1007/s10347-005-0071-8

    Article  Google Scholar 

  • Kendall AC (1985) Radiaxial fibrous calcite: a reappraisal. In: Schneidermann N, Harris PM (eds) Carbonate cements. Society of economic paleontologists and mineralogists, Special Publication No. 36, Tulsa, Oklahoma pp 59–77. https://doi.org/10.2110/pec.85.36.0059

    Chapter  Google Scholar 

  • Kershaw S, Crasquin S, Collin P-Y, Li Y, Feng Q, Forel M-B (2009) Microbialites as disaster forms in anachrnonistic facies following the end-Permian mass extinction: a discussion. Aust J Earth Sci 56:809–813

    Article  Google Scholar 

  • Kershaw S, Crasquin S, Li Y, Collin P-Y, Forel M-B, Mu X, Baud A, Wang Y, Xie S, Maurer F, Guo L (2012) Microbialites and global environmental change across the Permian-Triassic boundary: a synthesis. Geobiology 10(1):25–47. https://doi.org/10.1111/j.1472-4669.2011.00302.x

    Article  Google Scholar 

  • Lighty RG (1985) Preservation of internal reef porosity and diagenetic sealing of submerged early Holocene Barrier reef, southeast Florida Shelf, 123–151. In: Schneidermann N, Harris PM (eds) Carbonate cements. Society of economic paleontologists and mineralogists, Special Publication No. 36, Tulsa, Oklahoma. https://doi.org/10.2110/pec.85.36.0123

    Chapter  Google Scholar 

  • Luchinina VA (2009) Remalcis and Epiphyton as different stages in the life cycle of Calcareous Algae. Paleontol J 43(4):463–468. https://doi.org/10.1134/S0031030109040169

    Article  Google Scholar 

  • Mamet BL (1970) Sur les Ubellaceae. Can J Earth Sci 7(4):1164–1171

    Article  Google Scholar 

  • Mamet BL (1971) Sur le Genre Umbellina Loeblich et Tappan. Can J Earth Sci 8(1):174–175. https://doi.org/10.1139/e71-015

    Article  Google Scholar 

  • Mamet BL (1991) Carboniferous calcareous algae. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 370–451

    Chapter  Google Scholar 

  • Mamet B, Boulvain F (1992) Microflore des monticules micritiques frasniens «F2j» de Belgique. Rev Micropaléont 35(4):283–302

    Google Scholar 

  • Mamet B, Preat A (2013) Essai de description d’algues nouvelles paléozoïques. Geol Belg 16(1–2):35–48

    Google Scholar 

  • Mamet B, Roux A (1975) Algues dévoniennes et carbonifères de la Téthys occidentale. Troisième partie. Rev Micropaléont 18(3):134–187

    Google Scholar 

  • Mamet B, Roux A (1983) Algues dévono-carbonifères de l’Australie. Rev Micropaléont 26(2):63–131

    Google Scholar 

  • Mamet B, Preat A, Lehmami M (1999) Algues calcaires marines du dévonien Marocain (Meseta) Devonian marine carbonate algae of Morocco (Meseta). Rev Micropaléont 42(4):301–314

    Article  Google Scholar 

  • Mata SA, Bottjer DJ (2012) Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10(1):3–24. https://doi.org/10.1111/j.1472-4669.2011.00305.x

    Article  Google Scholar 

  • May A (1992) Die Kalkalgen-Flora des Ober-Eifeliums und Unter-Givetiums (Devon) des nordwestlichen Sauerlandes (Rheinisches Schiefergebirge). Palaeontogr Abt B 228(1–6):1–28

    Google Scholar 

  • Morrow J (2000) Shelf-to-basin lithofacies and conodont paleoecology across Frasnian–Famennian (F–F, mid-Late Devonian) boundary, central Great Basin (Western USA). Cour Forsch Inst Senckenberg 219:1–57

    Google Scholar 

  • Mottequin B, Poty E (2015) Kellwasser horizons, sea-level changes and brachiopod-coral crises during the Late Frasnian in the Namur Dinant Basin (southern Belgium): a synopsis. In: Becker RT, Königshof P, Brett CE (eds) Devonian Climate, Sea Level and Evolutionary Events. Geol Soc London Spec Pub 423: 235–250. https://doi.org/10.1144/sp423.6

    Article  Google Scholar 

  • Playford PE (1967) Devonian reef complexes in the northern Canning Basin 351–364. In: Oswald DH (ed) International symposium in the Devonian system, Calgary 1967, vol II. Alberta Society of petroleum geologists, Calgary, Alberta

    Google Scholar 

  • Poty E, Denayer J, Mottequin B (2014) Tsunamis triggered the Late Frasnian Kellwasser extinction event, 598. In: Cerdeño (ed) The history of life: a view from the southern hemisphere. Abstract volume of the 4th International Palaeontological Congress, CCT-CONICET, Mendoza, Argentina. International Palaeontological Association, Lawrence, KS, Sep 28–Oct 3

  • Pratt BR (1984) Epiphyton and Renalcis—diagenetic microfossils from calcification of coccoid blue-green algae. J Sediment Petrol 54(3):948–971. https://doi.org/10.1306/212F853F-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Racki G (1998) The Frasnian–Famennian brachiopod extinction events: a preliminary review. Acta Palaeontol Polonica 43(2):395–411

    Google Scholar 

  • Racki G, Racka M, Matyja H, Devleeschouwer X (2002) The Frasnian/Famennian boundary interval in the south Polish-Moravian shelf basins: integrated event-stratigraphical approach. Palaeogeogr Palaeoclimatol Palaeoecol 181(1–3):251–297. https://doi.org/10.1016/S0031-0182(01)00481-3

    Article  Google Scholar 

  • Rakociński M, Racki G (2016) Microbialites in the shallow-water marine environments of the Holy Cross Mountains (Poland) in the aftermath of the Frasnian–Famennian biotic crisis. Glob Planet Chang 136(1):30–40. https://doi.org/10.1016/j.gloplacha.2015.12.001

    Article  Google Scholar 

  • Riding R (1974) The Devonian genus Keega (Algae) reinterpreted an a stromatoporoid basal layer. Palaeontology 17(4):565–577

    Google Scholar 

  • Riding R (1977) Problems of affinity in Palaeozoic calcareous algae, 202–2011. In: Flügel E (ed) Fossil algae, recent results and developments. Springer, Berlin Heidelberg New York. https://doi.org/10.1007/978-3-642-66516-5_21

    Chapter  Google Scholar 

  • Riding R (1991) Calcified cyanobacteria. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 55–87

    Chapter  Google Scholar 

  • Roux A (1991) Ordovician to Devonian marine Calcareous algae. In: Riding R (ed) Calcareous algae and stromatolites. Springer, Berlin, pp 349–369

    Chapter  Google Scholar 

  • Sandberg CA, Ziegler W, Dreesen R, Butler JL (1988) Late Frasnian mass extinction: conodont event stratigraphy, global changes, and possible causes. Cour Forsch Inst Senckenberg 102:263–307

    Google Scholar 

  • Schindler E (1990) The Late Frasnian (Upper Devonian) Kellwasser Crisis. Lect Notes Earth Sci 30:151–159. https://doi.org/10.1007/BFb0011143

    Article  Google Scholar 

  • Schindler E (1993) Event-stratigraphical markers within the Kellwasser Crisis near the Frasnian/Famennian boundary (Upper Devonian) in Germany. Palaeogeogr Palaeoclimatol Palaeoecol 104:115–125. https://doi.org/10.1016/0031-0182(93)90124-2

    Article  Google Scholar 

  • Schroeder JH (1972) Calcified filaments of an endolithic alga in Recent Bermuda reefs. Neues Jb Geol Paläont Mh 1:16–33

    Google Scholar 

  • Schülke I (1995) Evolutive Prozesse bei Palmatolepis in der frühen Famenne-Stufe (Conodonta, Oberdevon). Gott Arb Geol Und Palaont 67:1–108

    Google Scholar 

  • Schülke I (1998) Conodont community around the “Kellwasser mass extinction event” (Frasnian/Famennian boundary interval). Senck leth 77(1–2):87–99. https://doi.org/10.1007/BF03043736

    Article  Google Scholar 

  • Sepkoski JJ Jr (1982) Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna, 371–386. In: Einsele G, Seilacher A (eds) Cyclic and Event Stratification. Springer, Berlin. https://doi.org/10.1007/978-3-642-75829-4_28

    Chapter  Google Scholar 

  • Sepkoski JJ Jr, Bambach RK, Droser ML (1991) Secular changes in Phanerozoic event bedding and the biological overprint. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin, pp 298–312

    Google Scholar 

  • Shen J, Webb GE (2004a) Famennian (Upper Devonian) calcimicrobial (Renalcis) reef at Miaomen, Guilin, Guangxi, South China. Palaeogeogr Palaeoclimatol Palaeoecol 204(3–4):373–394. https://doi.org/10.1016/S0031-0182(03)00737-5

    Article  Google Scholar 

  • Shen J, Webb GE (2004b) Famennian (Upper Devonian) stromatolite reefs at Shatang, Guilin, Guangxi, South China. Sediment Geol 170(1–2):63–84. https://doi.org/10.1016/j.sedgeo.2004.06.004

    Article  Google Scholar 

  • Shen J, Yu C, Bao H (1997) A Late-Devonian (Famennian) Renalcis-Epiphyton Reef at Zhaijiang, Guilin, South China. Facies 37(1):195–210. https://doi.org/10.1007/BF02537379

    Article  Google Scholar 

  • Shen J, Webb GE, Jell JS (2008) Platform margins, reef facies, and microbial carbonates; a comparison of Devonian reef complexes in the Canning Basin, Western Australia, and the Guilin region, South China. Earth Sci Rev 88(1–2):33–59. https://doi.org/10.1016/j.earscirev.2008.01.002

    Article  Google Scholar 

  • Shen J, Webb GE, Qing H (2010) Microbial mounds prior to the Frasnian–Famennian mass extinctions, Hantang, Guilin, South China. Sedimentology 57(7):1615–1639. https://doi.org/10.1111/j.1365-3091.2010.01158.x

    Article  Google Scholar 

  • Skompski S (1986) Upper Viséan calcareous algae from the Lublin Coal Basin. Acta geol Pol 36(1–3):251–280

    Google Scholar 

  • Skompski S (1987) The dasycladacean nature of Late Palaeozoic palaeoberesellid algae. Acta Geol Pol 37(1–2):21–31

    Google Scholar 

  • Smutná S (1995) Ichthyolity svrchního devonu v jižní části Moravského krasu. Master thesis, Katedra geologie a paleontologie Přírodovědecké fakulty Masarykovy Univerzity pp 1–50

  • Smutná S (1996) Rybí fauna svrchního devonu a spodního karbonu na Moravě. Geol Výzk Mor Slez V Roce 1995 2:122–127

    Google Scholar 

  • Spalletta C, Perri MC, Over DJ, Corradini C (2017) Famennian (Upper Devonian) conodont zonation: revised global standard. Bull Geosci 92(1):31–57. https://doi.org/10.3140/bull.geosci.1623

    Article  Google Scholar 

  • Stephens NP, Sumner DY (2002) Renalcids as fossilized biofilm clusters. Palaios 17(3):225–236. https://doi.org/10.1669/0883-1351(2002)017<0225:rafbc>2.0.co;2

    Article  Google Scholar 

  • Stephens NP, Sumner DY (2003) Famennian microbial reef facies, Napier and Oscar Ranges, Canning Basin, western Australia. Sedimentology 50(6):1283–1302. https://doi.org/10.1046/j.1365-3091.2003.00605.x

    Article  Google Scholar 

  • Streitová M (1994) Hranice frasnu a famenu mezi Hády a Šumberovou skálou v jižní části moravského krasu. Geol výzk Mor Slez v roce 1993 1:65–66

    Google Scholar 

  • Taylor TN, Taylor EN, Krings M (2009) Paleobotany: the biology and evolution of fossil plants., 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Toomey DF, Mountjoy EW, MacKenzie W (1970) Upper Devonian (Frasnian) algae and foraminifera from the Ancient Wall carbonate complex, Jasper National Park, Alberta, Canada. Can J Eart Sci 7(3):946–981. https://doi.org/10.1139/e70-090

    Article  Google Scholar 

  • Tsien HH (1979) Paleoecology of algal-bearing facies in the Devonian (Couvinian to Frasnian) reef complexes of Belgium. Palaeogeogr Palaeoclimatol Palaeoecol 27:103–127. https://doi.org/10.1016/0031-0182(79)90096-8

    Article  Google Scholar 

  • Tsien HH, Dricot E (1977) Devonian Calcareous algae from the Dinant and Namur Basins, Belgium. In: Flügel E (ed) Fossil algae. Springer, Berlin, pp 344–350. https://doi.org/10.1007/978-3-642-66516-5_35

    Chapter  Google Scholar 

  • Vachard D (2000) On some umbellinids (carbonate microproblematica) from the Frasnian (Late Devonian) of Chah Riseh area (Central Iran). Ann Soc Géol du Nord 8:75–80

    Google Scholar 

  • Vachard D, Cózar P (2010) An attempt of classification of the Palaeozoic incertae sedis Algospongia. Rev Esp de Micropaleont 42(2):129–241

    Google Scholar 

  • Vachard D, Cózar P, Aretz M, Izart A (2016) Late Viséan–early Serpukhovian cyanobacteria and algae from the Montagne Noire (France); taxonomy and biostratigraphy. Bull Geosci 91(3):433–466. https://doi.org/10.3140/bull.geosci.1613

    Article  Google Scholar 

  • Walliser OH (1996) Global events in the Devonian and Carboniferous. In: Walliser OH (ed) Global events and event stratigraphy in the Phanerozoic. Springer, Berlin, pp 225–250

    Chapter  Google Scholar 

  • Webb GE (1996) Was Phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)? Sedimentology 43:947–971

    Article  Google Scholar 

  • Weiner T, Kalvoda J, Kumpan T, Schindler E, Šimíček D (2017) An integrated stratigraphy of the Frasnian–Famennian boundary interval (Late Devonian) in the Moravian Karst (Czech Republic) and Kellerwald (Germany). Bull Geosci 92(2):257–281. https://doi.org/10.3140/bull.geosci.1636

    Article  Google Scholar 

  • Weinerová H, Weiner T, Hladil J (2017) Rostroconchs from Devonian sediments of the Moravo-Silesian Basin. Geosci Res Rep 50:153–157. https://doi.org/10.3140/zpravy.geol.2017.16 (in Czech)

    Article  Google Scholar 

  • Whalen MT, Day J, Eberli GP, Homewood PW (2002) Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: examples from the Late Devonian, Alberta basin, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 181(1–3):127–151. https://doi.org/10.1016/S0031-0182(01)00476-X

    Article  Google Scholar 

  • Wood A (1948) “Sphaerocodium”, a misinterpreted fossil from the Wenlock Limestone. Geol Assoc Proc 59(9):9–22

    Article  Google Scholar 

  • Wood R (2000a) Palaeoecology of a Late Devonian back-reef: Canning Basin, Western Australia. Paleontology 43(4):671–703. https://doi.org/10.1111/1475-4983.00145

    Article  Google Scholar 

  • Wood R (2000b) Novel paleoecology of a postextinction reef: Famennian (Late Devonian) of the Canning basin, northwestern Australia. Geology 28(11):987–990. https://doi.org/10.1130/0091-7613(2000)28<987:npoapr>2.0.co;2

    Article  Google Scholar 

  • Wood R (2004) Palaeoecology of a post-extinction reef: Famennian (Late Devonian) of the Canning Basin, north-western Australia. Paleontology 47(2):415–445. https://doi.org/10.1111/j.0031-0239.2004.00373.x

    Article  Google Scholar 

  • Woods AD (2014) Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features. Earth Sci Rev 137:6–18. https://doi.org/10.1016/j.earscirev.2013.08.015

    Article  Google Scholar 

  • Wray JL (1967a) Upper Devonian calcareous algae from the Canning Basin, Western Australia. Prof Contrib Col Sch Mines 3:1–76

    Google Scholar 

  • Wray JL (1967b) Upper Devonian algae from Western Australia. In: Oswald DH (ed) International symposium in the Devonian System, Calgary 1967, vol II. Alberta Society of Petroleum Geologists, Calgary, Alberta, pp 849–854

    Google Scholar 

  • Wray JL (1972) Environmental distribution of calcareous algae in Upper Devonian reef complexes. Geol Rundsch 61(2):578–584. https://doi.org/10.1007/BF01896335

    Article  Google Scholar 

  • Wray JL (1977) Developments in paleontology and stratigraphy, 4. Calcareous algae. Elsevier, New York

    Google Scholar 

  • Wray JL, Playford PE (1970) Some occurrences of Devonian reef-building algae in Alberta. Bull Can Petrol Geol 18(4):544–555

    Google Scholar 

  • Wright VP, Cherns L (2015) Leaving no stone unturned: the feedback between increased biotic diversity and early diagenesis during the Ordovician. J Geol Soc London 174(5):241–244. https://doi.org/10.6084/M9.FIGSHARE.3454148

    Article  Google Scholar 

  • Yao L, Aretz M, Chen J, Webb GE, Wang X (2016) Global microbial carbonate proliferation after the end-Devonian mass extinction: mainly controlled by demise of skeletal bioconstructors. Sci Rep 6(39694):1–9

    Google Scholar 

  • Zatoń M, Krawczyński W (2011) Microconchid tubeworms across the Upper Frasnian–Lower Famennain interval in the Central Devonian field. Russia. Paleontology 54(6):1455–1473. https://doi.org/10.1111/j.1475-4983.2011.01110.x

    Article  Google Scholar 

  • Zatoń M, Zhuravlev A, Rakociński M, Filipiak P, Borszcz T, Krawcyński Wilson MA, Sokiran EV (2014) Microconchid-dominated cobbles from the Upper Devonian of Russia: Opportunism and dominance in a restricted environment following the Frasnian–Famennian biotic crisis. Palaeogeogr Palaeoclimat Palaeoecol 401:142–153. https://doi.org/10.1016/j.palaeo.2014.02.029

    Article  Google Scholar 

  • Zatoń M, Borszcz T, Rakociński M (2017) Temporal dynamics of encrusting communities during the Late Devonian: a case study from the Central Devonian Field. Russia. Paleobiology 43(4):550–568. https://doi.org/10.1017/pab.2017.8

    Article  Google Scholar 

  • Ziegler W, Sandberg CA (1990) The Late Devonian standard conodont zonation. Cour Forsch-Inst Senck 121:1–115

    Google Scholar 

  • Zukalová V, Chlupáč I (1982) Stratigrafická klasifikace nemetamorfovaného devonu moravskoslezské oblasti. Časopis pro mineralogii a geologii 27(3):225–241

    Google Scholar 

Download references

Acknowledgements

Noemi Mészárosová and Radek Škoda are thanked for the preparation of the SEM micrographs. Thanks are due to Jindřich Hladil for his valuable comments, and Tomáš Viktorýn for his kind help in the field. Reviewers Markus Aretz and Emilia Jarochowska are thanked for their helpful suggestions. The research was financed by the Czech Science Foundation (14-18183S, 16-11563S) and was conducted within institutional support RVO 67985831 of the Institute of Geology of the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Weiner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 120 kb)

Supplementary material 2 (XLS 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiner, T., Weinerová, H. & Kalvoda, J. Microproblematica, calcareous algae, and microbialites at the Frasnian-Famennian boundary interval in the Šumbera section (Moravian Karst, Czech Republic) and their significance in the context of the Kellwasser Crisis. Facies 64, 26 (2018). https://doi.org/10.1007/s10347-018-0538-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-018-0538-z

Keywords

Navigation