Al-Bassam K, Magna T, Vodrážka R, Čech S (2019) Mineralogy and geochemistry of marine glauconitic siliciclasts and phosphates in selected Cenomanian-Turonian units, Bohemian Cretaceous Basin, Czech Republic: implications for provenance and depositional environment. Geochemistry 79:347–368
Google Scholar
Amorosi A (1995) Glaucony and sequence stratigraphy: a conceptual framework of distribution in siliciclastic sequences. J Sediment Res B65:419–425
Google Scholar
Amorosi A (1997) Detecting compositional, spatial, and temporal attributes of glaucony: a tool for provenance research. Sediment Geol 109:135–153
Google Scholar
Amorosi A, Sammartino I, Tateo F (2007) Evolution patterns of glaucony maturity: a mineralogical and geochemical approach. Deep-Sea Res Part II 54:1364–1374
Google Scholar
Amorosi A, Guidi R, Mas R, Falanga E (2012) Glaucony from the Cretaceous of the Sierra de Guadarrama (Central Spain) and its application in a sequence-stratigraphic context. Int J Earth Sci 101:415–427
Google Scholar
Baccelle L, Bosellini A (1965) Diagrammi per la stima visiva: della composizione percentuale nelle rocce sedimentarie, vol 1. Univ. degli studi, Ferrara
Google Scholar
Baldermann A, Dietzel M, Mavromatis V, Mittermayr F, Warr LN, Wemmer K (2017) The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: A case study of Lower Cretaceous shallow-water carbonates. Chem Geol 453:21–34
Google Scholar
Banerjee S, Chattoraj SL, Saraswati PK, Dasgupta S, Sarkar U, Bumby A (2012) The origin and maturation of lagoonal glauconites: a case study from the Oligocene Maniyara Fort Formation, western Kutch, India. Geol J 47:357–371
Google Scholar
Banerjee S, Bansal U, Thorat A (2016) A review on palaeogeographic implications and temporal variation in glaucony composition. J Palaeogeogr 5:43–71
Google Scholar
Bansal U, Pande K, Banerjee S, Nagendra R, Jagadeesan KC (2019) The timing of oceanic anoxic events in the Cretaceous succession of Cauvery Basin: constraints from 40Ar/39Ar ages of glauconite in the Karai Shale Formation. Geol J 54:308–315
Google Scholar
Bansal U, Banerjee S, Pande K, Ruidas D (2020) Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada basin, central India. Geol Mag 157:233–247
Google Scholar
Bansal U, Banerjee S, Ruidas DK, Pande K (2018) Origin and geochemical characterization of Maastrichtian glauconites in the Lameta Formation, Central India. J Palaeogeogr 7:99–116
Google Scholar
Bärtling R (1920) Transgressionen, Regressionen und Faziesverteilung in der Mittleren und Oberen Kreide des Beckens von Münster. Z Dt Geol Ges 72:161–217
Google Scholar
Beck R, Hazard J (1893) Erläuterungen zur geologischen Spezialkarte des Königreichs Sachsen, Nr. 66: Blatt Dresden. Königliches Finanzministerium, Leipzig
Berensmeier M, Dölling B, Linnert C, Wilmsen M (2018a) Stratigraphical dissection of proximal shallow-water deposits: integrated analysis of the Cenomanian-Coniacian in the southwestern Münsterland Cretaceous Basin (northwest Germany). Z dt Ges Geowiss 169:567–586
Google Scholar
Berensmeier M, Dölling B, Frijia G, Wilmsen M (2018b) Facies analysis of proximal upper Cretaceous deposits in the southwestern Münsterland Cretaceous Basin (northwest Germany). Cretac Res 87:241–260
Google Scholar
Berger A, Loutre MF (1994) Precession, eccentricity, obliquity, insolation and paleoclimates. In: Duplessy JC, Spyridakis M-T (eds), Long-term climatic variations. NATO ASI Subseries 1, 22, pp 107–151
Burnett JA (1998) Upper Cretaceous. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Chapman Hall, London, pp 132–199
Google Scholar
Chafetz HS (2007) Paragenesis of the Morgan Creek Limestone, Late Cambrian, central Texas: constraints on the formation of glauconite. Deep-Sea Res II 54:1350–1363
Google Scholar
Chafetz HS, Reid A (2000) Syndepositional shallow-water precipitation of glauconitic minerals. Sediment Geol 136:29–42
Google Scholar
Dott RH (1964) Wacke, greywacke and matrix; what approach to immature sandstone classification? J Sediment Res 34:625–632
Google Scholar
Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE(ed), Classification of carbonate rocks. Amer Assoc Petrol Geol, Mem 1:108–121
El Albani A, Meunier A, Fürsich FT (2005) Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France). Terra Nova 17:537–544
Google Scholar
Fischer AG, D’Argenio B, Premoli Silva I, Weissert H, Ferreri V (2004) Cyclostratigraphic approach to earth’s history: an introduction. In: D’Argenio B, Fischer AG, Premoli Silva I, Weissert H, Ferreri V (eds), Cyclostratigraphy: Approaches and case histories. SEPM Spec Publ 81:5–16
Fischer H (1990) Glauconite formation: discussion of the terms authigenic, perigenic, allogenic, and meta-allogenic. Eclogae Geol Helv 83:1–6
Google Scholar
Föhlisch K (1998) Palökologie der sandig ausgebildeten Dölzschen Formation (Oberes Obercenoman) Sachsen. Abh Staatl Mus Min Geol Dresden 43(44):141–149
Google Scholar
Föllmi KB (2016) Sedimentary condensation. Earth-Sci Rev 152:143–180
Google Scholar
Funk H (1971) Zur Stratigraphie und lithologie des helvetischen kieselkalkes und der altmannschichten in der santis-churfirsten-gruppe (Nordostschweiz). Eclogae geol Helv 64:345–433
Google Scholar
Gale AS (1995) Cyclostratigraphy and correlation of the Cenomanian stage in Western Europe. In: House MR, Gale AS (eds) Orbital forcing timescales and cyclostratigraphy. Geol Soc London Spec Publ 85:177–197
Gale AS, Young JR, Shackleton NJ, Crowhurst SJ, Wray DS (1999) Orbital tuning of Cenomanian marly chalk successions: towards a Milankovitch time-scale for the Late Cretaceous. Phil Trans Roy Soc London 357:1815–1829
Google Scholar
Garzanti E (2019) Petrographic classification of sand and sandstone. Earth-Sci Rev 192:545–563
Google Scholar
Geinitz HB (1850) Das Quadergebirge oder die Kreideformation in Sachsen, mit besonderer Berücksichtigung der glaukonitreichen Schichten. Weidmann’sche Buchhandlung, Leipzig
Google Scholar
Goldring R (1999) Field palaeontology, 2nd edn. Longman, Singapore
Google Scholar
Hancock JM, Kauffman EG (1979) The great transgressions of the Late Cretaceous. J Geol Soc London 136:175–186
Google Scholar
Hancock JM (1989) Sea-level changes in the British region during the Late Cretaceous. Proc Geol Assoc 100:565–594
Google Scholar
Haq BU (2014) Cretaceous eustasy revisited. Glob Planet Change 113:44–58
Google Scholar
Haq BU, Hardenbol J, Vail P (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167
Google Scholar
Harder H (1980) Syntheses of glauconite at surface temperatures. Clays Clay Miner 28:217–222
Google Scholar
Harding SC, Nash BP, Petersen EU, Ekdale AA, Bradbury CD, Dyar MD (2014) Mineralogy and geochemistry of the Main Glauconite Bed in the Middle Eocene of Texas: Paleoenvironmental implications for the verdine facies. PLoS ONE 9:e87656
Google Scholar
Heimhofer U, Wucherpfennig N, Adatte T, Schouten S, Schneebeli-Hermann E, Gardin S, Keller G, Kentsch S, Kujau A (2018) Vegetation response to exceptional global warmth during Oceanic Anoxic Event 2. Nature Commun 9:3832 (8 pp)
Hiss M (1982) Neue Ergebnisse zur Paläogeographie des Cenomans in Westfalen. N Jb Geol Paläont Monatsh 1982:533–546
Google Scholar
Huggett JM (2005) Glauconites. In: Selley RC, Cocks LRM, Plimer IR (eds) Encyclopedia of Geology, vol 3. Elsevier, Amsterdam, pp 542–548
Google Scholar
Huggett J, Adetunji J, Longstaffe F, Wray D (2017) Mineralogical and geochemical characterisation of warm-water, shallow-marine glaucony from the Tertiary of the London Basin. Clay Miner 52:25–50
Google Scholar
Janetschke N, Wilmsen M (2014) Sequence stratigraphy of the lower Upper Cretaceous Elbtal Group (Cenomanian–Turonian of Saxony, Germany). Z Dt Gesr Geowiss 165:179–208
Google Scholar
Janetschke N, Niebuhr B, Wilmsen M (2015) Inter-regional sequence-stratigraphical synthesis of the Plänerkalk, Elbtal and Danubian Cretaceous groups (Germany): Cenomanian-Turonian correlations around the Mid-European Island. Cretac Res 56:530–549
Google Scholar
Käßner A, Stanek KP, Lapp M (2020) Post-Variscan tectonic and landscape evolution of the Elbe Fault Zone and the Lusatian Block based on apatite fission-track data and geomorphologic constraints. Geomorphology 355:106860
Google Scholar
Kietzmann DA, Paulin SM (2019) Cyclostratigraphy of an upper Valanginian—lower Hauterivian mixed siliciclastic-carbonate ramp succession (Pilmatué Member of the Agrio Formation), Loma La Torre section, northern Neuquén Basin, Argentina. Cretac Res 98:26–46
Google Scholar
Kuhnt W, Holbourn A, Gale A, Chellai EH, Kennedy WJ (2009) Cenomanian sequence stratigraphy and sea-level fluctuations in the Tarfaya Basin (SW Morocco). Geol Soc Amer Bull 121:1695–1710
Google Scholar
Larson RL, Erba E (1999) Onset of the mid-Cretaceous greenhouse in the Barremian-Aptian: Igneous events and the biological, sedimentary, and geochemical responses. Paleoceanography 14:663–678
Google Scholar
López-Quirós A, Sánchez-Navas A, Nieto F, Escutia C (2020) New insights into the nature of glauconite. Amer Mineral 105:674–686
Google Scholar
McRae SG (1972) Glauconite. Earth-Sci Rev 8:397–440
Google Scholar
Meunier A, ElAlbani A (2007) The glauconite–Fe-illite–Fe-smectite problem: a critical review. Terra Nova 19:95–104
Google Scholar
Myrow PM, Southard JB (1996) Tempestite deposition. J Sediment Res 66:875–887
Google Scholar
Niebuhr B (2019) From animal to plant kingdom: the alleged sponge Siphonia bovista Geinitz from the Cretaceous of Saxony (Germany) in fact represents internal moulds of the cone-like plant fossil Dammarites albens Presl in Sternberg. Bull Geosci 94:221–234
Google Scholar
Niebuhr B (2020) Pennrich-Formation. LithoLex – Lithostratigraphisches Lexikon Deutschland: https://litholex.bgr.de/ (downloaded 04/1172020)
Niebuhr B, Wilmsen M (2014) Kreide-Fossilien in Sachsen, Teil 1. Geol Saxon 60:1–254
Google Scholar
Niebuhr B, Wilmsen M (2016) Kreide-Fossilien in Sachsen, Teil 2. Geol Saxon 62:1–245
Google Scholar
Niebuhr B, Hiss M, Kaplan U, Tröger KA, Voigt S, Voigt T, Wiese F, Wilmsen M (2007) Lithostratigraphie der norddeutschen Oberkreide. SDGG 55:1–136
Google Scholar
Niebuhr B, Wilmsen M, Voigt T (2020) Die Oberkreide (Cenomanium–Mittelconiacium) im Zittauer Sandsteingebirge (Deutschland, Tschechien). Z Dt Ges Geowiss 171:163–197
Google Scholar
Odin GS (1988) Green marine clays. Develop Sediment 45: 446 pp, Elsevier, Amsterdam
Odin GS (1990) Clay mineral formation at the continent-ocean boundary: the verdine facies. Clay Miner 25:477–483
Google Scholar
Odin GS, Matter A (1981) De glauconiarum origine. Sedimentology 28:611–641
Google Scholar
Odin GS, Fullagar PD (1988) Geological significance of the glaucony facies. Develop Sediment 45:295–332
Google Scholar
Odin GS, Sen Gupta BK (1988) Geological significance of the verdine facies. Develop Sediment 45:205–219
Google Scholar
Odom IE (1976) Microstructure, mineralogy and chemistry of Cambrian glauconite pellets and glauconite, Central USA. Clay Clay Miner 24:232–238
Google Scholar
Odom IE (1984) Glauconite and celadonite minerals. In: Bailey SW (ed), Micas. Rev Mineral Geochem 13: pp 554–572, Mineralogical Society of America, Washington
Petrascheck W (1902) Die Ammoniten der sächsischen Kreideformation. Beitr Paläont Geol Österr-Ungarns und des Orients 14:131–162, pls 7–12
Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone, 2nd edn. Springer, New York
Google Scholar
Pogge von Strandmann PAE, Jenkyns HC, Woodfine RG (2013) Lithium isotope evidence for enhanced weathering during Oceanic Anoxic Event 2. Nature Geosci 6:668–672
Google Scholar
Richardt N, Wilmsen M, Niebuhr B (2013) Late Cenomanian-Early Turonian facies development and sea-level changes in the Bodenwöhrer Senke (Danubian Cretaceous Group, Bavaria, Germany). Facies 59:803–827
Google Scholar
Robaszynski F, Juignet P, Gale AS, Amédro F, Hardenbol J (1998) Sequence stratigraphy in the Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. In: Jaquin T, de Graciansky P, Hardenbol J (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. Soc Econ Palaeont Mineral Spec Publ 60:363–385
Schlanger SO, Jenkyns HC (1976) Cretaceous oceanic anoxic events: Causes and consequences. Geol Mijnb 55:179–184
Google Scholar
Seibertz E (1977) Litho-, Bio-, Ökostratigraphie, Sedimentologie und Tektonik im Soester Grünsand. Geol Jb A40:61–113
Google Scholar
Seifert A (1955) Stratigraphie und Paläogeographie des Cenoman und Turons im sächsischen Elbtalgebiet. Freib Forschungsh C14:1–218
Google Scholar
Seilacher A, Aigner T (1991) Storm deposition at the bed, facies and basin scale: the geologic perspective. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and Events in Stratigraphy. Springer, Berlin, pp 249–267
Google Scholar
Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian Plate sequence stratigraphy. Geoarabia Spec Publ 2:1–371
Google Scholar
Siegert T (1906) Section Kötzschenbroda–Oberau. Erl geol Specialk Königr Sachsen, Bl 49 (2. Aufl), pp 1–64
Stow DAV (2005) Sedimentary rocks in the field. Manson Publishing, London
Google Scholar
Tang D, Shi X, Ma J, Jiang G, Zhou X, Shi Q (2017) Formation of shallow-water glaucony in weakly oxygenated Precambrian ocean: an example from the Mesoproterozoic Tieling Formation in North China. Precambr Res 294:214–229
Google Scholar
Thompson GR, Hower J (1975) The mineralogy of glauconite. Clays Clay Mineral 23:289–300
Google Scholar
Tröger K-A (1956) Über die Kreideablagerungen des Plauenschen Grundes (sedimentpetrographische und biostratinomisch-paläontologische Untersuchungen). Jb Staatl Mus Mineral Geol Dresden 2:22–124
Google Scholar
Tröger K-A (1967) Zur Paläontologie, Biostratigraphie und faziellen Ausbildung der unteren Oberkreide (Cenoman-Turon). Teil I – Paläontologie und Biostratigraphie der Inoceramen des Cenomans und Turons. Abh Staatl Mus Mineral Geol Dresden 12:13–207
Google Scholar
Tröger K-A (1969) Zur Paläontologie, Biostratigraphie und faziellen Ausbildung der unteren Oberkreide (Cenoman-Turon). Teil II – Stratigraphie und fazielle Ausbildung des Cenomans und Turons in Sachsen, dem nördlichen Harzvorland und dem Ohmgebirge. Abh Staatl Mus Mineral Geol Dresden 13:1–70
Google Scholar
Tröger K-A (2015) Obercenomane Inoceramen aus der sächsischen Kreide. Geol Saxon 60:377–425
Google Scholar
Tröger K-A, Niebuhr B (2014) Inoceramen. In: Niebuhr B, Wilmsen M (eds), Kreide-Fossilien in Sachsen, Teil 1. Geol Saxon 60:169–200
Udgata DBP (2007) Glauconite as an indicator of sequence stratigraphic packages in a Lower Paleocene passive-margin shelf succession, Central Alabama. Unpubl master thesis, 109 pp, Auburn University, Alabama.
Vejbæk OV, Andersen C, Dusa M, Herngreen W, Krabbe H, Leszczynski K, Lott GK, Mutterlose J, van der Molen AS (2010) Cretaceous. In: Doornenbal H, Stevenson A (eds) Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publ, Houten, pp 195–209
Google Scholar
Voigt S, Gale AS, Voigt T (2006) Sea-level changes, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. Cretac Res 27:836–858
Google Scholar
Voigt S, Erbacher J, Mutterlose J, Weiss W, Westerhold T, Wiese F, Wilmsen M, Wonik T (2008) The Cenomanian-Turonian of the Wunstorf section (North Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2. Newsl Stratigr 43:65–89
Google Scholar
Voigt T (1994) Faziesentwicklung und Ablagerungssequenzen am Rand eines Epikontinentalmeeres – die Sedimentationsgeschichte der Sächsischen Kreide. Unpubl PhD thesis, 130pp, TU Bergakademie, Freiberg
Voigt T (1999) Ablagerungsbedingungen und Taphonomie der Schmilka-Formation (Unter-Turon) südlich von Pirna (Sächsisches Kreidebecken). Greifsw Geowiss Beitr 6:193–207
Google Scholar
Voigt T (2009) Die Lausitz-Riesengebirgs-Antiklinalzone als kreidezeitliche Inversionsstruktur: geologische Hinweise aus den umgebenden Kreidebecken. Z geol Wissensch 37:15–39
Google Scholar
Voigt T, Voigt S, Tröger K-A (1994) Faziesentwicklung einer ertrunkenen Felsküste—die obercenomane Monzonitklippe westlich von Dresden. Freib Forschungsh C452:23–34
Google Scholar
Wendler JE, Meyers SR, Wendler I, Kuss J (2014) A million-year-scale control on Late Cretaceous sea-level. Newsl Stratigr 47:1–19
Google Scholar
Wildberg H (1980) Glaukonitgenese und Lithofazies im Cenoman von Dortmund (Westfalen). N Jb Geol Paläont, Mh 1980:52–64
Google Scholar
Wilmsen M (2003) Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretac Res 24:525–568
Google Scholar
Wilmsen M (2007) Integrated stratigraphy of the upper Lower–lower Middle Cenomanian of northern Germany and southern England. Acta Geol Polon 57:263–279
Google Scholar
Wilmsen M (2012) Origin and significance of Upper Cretaceous bioevents: Examples from the Cenomanian. Acta Palaeont Polon 57:759–771
Google Scholar
Wilmsen M (2017) Macroinvertebrate fauna and depositional environment of the lower Upper Cenomanian Oberhäslich Formation in the Saxonian Cretaceous Basin (Germany). Ann Paléont 103:33–44
Google Scholar
Wilmsen M, Niebuhr B, Hiss M (2005) The Cenomanian of northern Germany: facies analysis of a transgressive biosedimentary system. Facies 51:242–263
Google Scholar
Wilmsen M, Niebuhr B, Wood CJ, Zawischa D (2007) Fauna and palaeoecology of the Middle Cenomanian Praeactinocamax primus Event at the type locality, Wunstorf quarry, northern Germany. Cretac Res 28:428–460
Google Scholar
Wilmsen M, Niebuhr B, Chellouche P, Pürner T, Kling M (2010) Facies pattern and sea-level dynamics of the early Late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany). Facies 56:483–507
Google Scholar
Wilmsen M, Vodrážka R, Niebuhr B (2011) The Upper Cenomanian and Lower Turonian of Lockwitz (Dresden area, Saxony, Germany): lithofacies, stratigraphy and fauna of a transgressive succession. Freib Forschungsh C 540:27–45
Google Scholar
Wilmsen M, Niebuhr B, Fengler M, Püttmann T, Berensmeier M (2019) The Late Cretaceous transgression in the Saxonian Cretaceous Basin (Germany): old story, new data and novel findings. Bull Geosci 94:71–100
Google Scholar