Skip to main content

Advertisement

Log in

Late Cenomanian–Early Turonian facies development and sea-level changes in the Bodenwöhrer Senke (Danubian Cretaceous Group, Bavaria, Germany)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Upper Cenomanian–Lower Turonian litho-stratigraphic units of the Danubian Cretaceous Group of the proximal Bodenwöhrer Senke (Regensburg, Eibrunn and Winzerberg formations, the latter consisting of a lower Reinhausen Member and an upper Knollensand Member), have been investigated with a focus on facies analysis and sequence stratigraphy. Analyses of litho-, bio-, and microfacies resulted in the recognition of 12 predominantly marine facies types for the Eibrunn and Winzerberg formations. Petrographic and paleontological properties as well as gradual transitions in the sections suggest that their depositional environment was a texturally graded, predominantly siliciclastic, storm-dominated shelf. The muddy–siliceous facies types FT 1–3 have been deposited below the storm wave-base in an outer shelf setting. Mid-shelf deposits are represented by fine- to medium-grained, bioturbated, partly glauconitic sandstones (FT 4–6). Coarse-grained, gravelly and/or shell-bearing sandstones (FT 7–10) developed in the inner shelf zone. Highly immature, arkosic coarse-grained sandstones and conglomerates (FT 11 and 12) characterize an incised, high-gradient braided river system. The Winzerberg Formation with its general coarsening- and thickening-upward trend reflects a regressive cycle culminating in a subaerial unconformity associated with a coarse-grained, gravelly unit of marine to fluvial origin known as the “Hornsand” which is demonstrably diachronous. The overlying Altenkreith Member of the Roding Formation signifies the onset of a new transgressive cycle in the early Middle Turonian. The sequence stratigraphic analysis suggests that the deposition of the Upper Cenomanian and Lower Turonian strata of the Bodenwöhrer Senke took place in a single cycle of third-order eustatic sea-level change between the major sequence boundaries SB Ce 5 (mid-Late Cenomanian) and SB Tu 1 (Early–Middle Turonian boundary interval). The southeastern part of the Bodenwöhrer Senke was flooded in the mid-Late Cenomanian (Praeactinocamax plenus transgression) and a second transgressive event occurred in the earliest Turonian. In the central and northwestern parts of the Bodenwöhrer Senke, however, the initial transgression occurred during the earliest Turonian, related to pre-transgression topography. Thus, the Regensburg and Eibrunn formations are increasingly condensed here and cannot be separated anymore. Following an earliest Turonian maximum flooding, the Lower Turonian Winzerberg Formation filled the available accommodation space, explaining its constant thickness of 35–40 m across the Bodenwöhrer Senke and excluding tectonic activity during this interval. Rapid sea-level fall at SB Tu 1 terminated this depositional sequence. This study shows that Late Cenomanian–Early Turonian deposition in the Bodenwöhrer Senke was governed by eustatic sea-level changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Boulila S, Galburn B, Miller KG, Pekar SF, Browning JV, Laskar J, Wright JD (2011) On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth Sci Rev 109:94–112

    Article  Google Scholar 

  • Brunhuber A (1917) Die geologischen Verhältnisse von Regensburg und Umgebung. Naturwissenschaftlicher Verein, Regensburg, p 107

    Google Scholar 

  • Caron M (1985) Cretaceous planktic foraminifera. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University Press, Cambridge, pp 17–86

    Google Scholar 

  • Čech S, Klein V, Křiž J, Valečka J (1980) Revision of the Upper Cretaceous stratigraphy of the Bohemian Cretaceous Basin. Věst Ŭst Ustav Geol 55:277–295

    Google Scholar 

  • Einsele G (2000) Sedimentary basins—evolution, facies and sedimentary budget. Springer, Berlin, p 792

    Google Scholar 

  • Elrick M, Berkyova S, Klapper G, Sharp Z, Joachimski M, Fryda J (2009) Stratigraphic and oxygen isotope evidence for My-scale glaciation driving eustasy in the Early–Middle Devonian greenhouse world. Palaeogeogr Palaeoclimatol Palaeoecol 276:170–181

    Article  Google Scholar 

  • Fay M (1983) Sedimentologie und Paläogeographie der tieferen Oberkreide in Ostbayern. Berliner Geowiss Abh A 49:1–57

    Google Scholar 

  • Förster R, Meyer R, Risch H (1983) Ammoniten und planktonische Foraminiferen aus den Eibrunner Mergeln (Regensburger Kreide, Nordostbayern). Zitteliana 10:123–141

    Google Scholar 

  • Gale AS (1995) Cyclostratigraphy and correlation of the Cenomanian stage in Western Europe. In: House MR, Gale AS (eds) Orbital forcing timescales and cyclostratigraphy. Geol Soc London Spec Publ 85:177–197

  • Gale AS (1996) Turonian correlation and sequence stratigraphy of the Chalk in southern England. In: Hesselbo SP, Parkinson DN (eds) Sequence stratigraphy in British geology. Geol Soc London Spec Publ 103:177–195

  • Gale AS, Kennedy WJ, Voigt S, Walaszczyk I (2005) Stratigraphy of the Late Cenomanian–Early Turonian Chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes. Cret Res 26:460–487

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (2004) A geologic time scale 2004. Cambridge University Press, Cambridge, p 589

    Book  Google Scholar 

  • Gümbel CW von (1868) Geognostische Beschreibung des Koenigreichs Bayern. 2. Abtheilung, Geognostische Beschreibung des Ostbayerischen Grenzgebirges oder des Bayerischen und Oberpfälzer Waldgebirges. Justus Perthes, Gotha, p 968

  • Hinnov LA (2000) New perspectives on orbitally forced stratigraphy. Ann Rev Earth Planet Sci 28:419–475. doi:10.1146/annurev.earth.28.1.419

    Article  Google Scholar 

  • Jago CF, Barusseau JP (1981) Sediment entrainment on a wave-graded shelf, Roussillon, France. Mar Geol 42:279–299

    Article  Google Scholar 

  • Johnson DW (1919) Shore processes and shoreline development. Wiley, New York, p 584

    Google Scholar 

  • Korsitzke H-D (1995) Planktonische Foraminiferen der Oberkreide (Cenoman–Campan) am nördlichen Tethysrand (süddeutscher Molasse-Untergrund, Regensburger Kreide)—Systematik, Stratigraphie sowie Palökologie der Foraminiferengesamtfauna. Docum Natur 92:1–274

    Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astronom Astrophys 428:261–285

    Article  Google Scholar 

  • Meyer RKF (1989) Die Entwicklung der Kreide-Sedimente im Westteil der Bodenwöhrer Senke. Erlanger Geol Abh 117:53–96

    Google Scholar 

  • Meyer RKF (1996) Kreide. In: Freudenberger W, Schwerd K (ed) Erläuterungen zur Geologischen Karte von Bayern 1:500000. GLA, München, pp 112–125

  • Meyer RKF, Mielke H (1993) Erläuterungen zur Geologischen Karte von Bayern 1:25000, Blatt Nr. 6639 Wackersdorf. GLA, München, p 194

  • Meyers SR, Siewert SE, Singer BS, Sageman BB, Condon DJ, Obradovich JD, Jicha BR, Sawyer DA (2012) Intercalibration of radioisotopic and astrochronologic time scales for the Cenomanian–Turonian boundary interval, Western Interior Basin, USA. Geology 40:7–10. doi:10.1130/G32261.1

    Article  Google Scholar 

  • Miall AD (1996) The geology of fluvial deposits: sedimentary facies, basin analysis and petroleum geology. Springer, Berlin, p 582

    Google Scholar 

  • Nagm E (2009) Integrated stratigraphy, palaeontology and facies analysis of the Cenomanian–Turonian (Upper Cretaceous) Galala and Maghra el Hadida formations of the western Wadi Araba, Eastern Desert, Egypt. PhD thesis, Würzburg University, Würzburg. http://www.opus-bayern.de/uni-wuerzburg/volltexte/2009/3988/

  • Nagm E, Wilmsen M, Aly M, Hewaidy A (2010) Biostratigraphy of the Upper Cenomanian–Turonian (lower Upper Cretaceous) successions of the western Wadi Araba, Eastern Desert, Egypt. Newsl Stratigr 44:17–35

    Article  Google Scholar 

  • Niebuhr B (2011a) Die Bohrung Pfakofen LAM B2/09 südlich von Regensburg (Turonium/Coniacium-Grenzbereich)—ein Beitrag zur Stratigraphie der Danubischen Kreide-Gruppe (Bayern, Süd-Deutschland). Geol Bl NO Bayern 61:97–116

    Google Scholar 

  • Niebuhr B (2011b) Vergessene Kreide—Verkieselungen in der „lehmigen Albüberdeckung“ der Südlichen Frankenalb (Bayern). Freiberger Forsch H C 540:47–63

    Google Scholar 

  • Niebuhr B, Hiss M, Kaplan U, Tröger K-A, Voigt S, Voigt T, Wiese F, Wilmsen M (2007) Lithostratigraphie der norddeutschen Oberkreide. SDGG 55:1–136

    Google Scholar 

  • Niebuhr B, Pürner T, Wilmsen M (2009) Lithostratigraphie der außeralpinen Kreide Bayerns. SDGG 65:7–58

    Google Scholar 

  • Niebuhr B, Wilmsen M, Chellouche P, Richardt N, Pürner T (2011) Stratigraphy and facies of the Turonian (Upper Cretaceous) Roding Formation at the southwestern margin of the Bohemian Massif (southern Germany, Bavaria). ZDGG 62:295–316

    Google Scholar 

  • Niebuhr B, Richardt N, Wilmsen M (in press) Facies and integrated stratigraphy of the Upper Turonian (Upper Cretaceous) Großberg Formation south of Regensburg (Bavaria, southern Germany). Acta Geol Polon

  • Philip J, Floquet M (2000) Late Cenomanian (94.7–93.5). In: Dercourt J, Gaetani M, Vrielynck B, Barrier E, Biju-Duval B, Brunet MF, Cadet JP, Crasquin S, Sandulescu M (eds) Atlas Peri-Tethys, Palaeogeographical Maps. CCGM-CGMW, Paris, pp 129–136

    Google Scholar 

  • Richardt N (2010) Das Cenoman im Teutoburger Wald bei Halle/Westfalen (NW-Deutschland): Eine integrierte stratigraphisch-sedimentologische, mikrofazielle und geophysikalische Analyse. Geol Paläont Westf 78:5–60

    Google Scholar 

  • Richardt N, Wilmsen M (2012) Lower Upper Cretaceous standard section of the southern Münsterland (NW Germany): carbon stable-isotopes and sequence stratigraphy. Newsl Stratigr 45:1–24

    Google Scholar 

  • Robaszynski F, Juignet P, Gales AS, Amédro F, Hardenbol J (1998) Sequence stratigraphy in the Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. In: de Graciansky P, Hardenbol J, Jaquin T, Vail PR (eds) Mesozoic and Cenozoic sequence stratigraphy of European basins. Soc Econ Palaeont Miner Spec Publ 60:363–385

  • Sageman BB, Meyers SR, Arthur MA (2006) Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype. Geology 34:125–128

    Article  Google Scholar 

  • Sharland PR, Archer RP, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001) Arabian Plate sequence stratigraphy. Geoarabica Spec Publ 2:1–371

    Google Scholar 

  • Swift DJP, Heron SD, Dill CE (1969) The Carolina Cretaceous: petrographic reconnaissance of a graded shelf. J Sediment Res 39:18–33

    Google Scholar 

  • Tröger K-A (2003) The Cretaceous of the Elbe valley in Saxony—a review. Carnets Géol A03:1–14

    Google Scholar 

  • Tröger K-A, Niebuhr B, Wilmsen M (2009) Inoceramen aus dem Cenomanium bis Coniacium der Danubischen Kreide-Gruppe (Bayern, Süd-Deutschland). SDGG 65:59–110

    Google Scholar 

  • Uličný D, Špičáková L (1996) Response to high frequency sea-level change in a fluvial to estuarine succession: Cenomanian palaeovalley fill, Bohemian Cretaceous Basin. In: Howell JA, Aitken JF (eds) High resolution sequence stratigraphy: innovations and applications. Geol Soc London Spec Publ 104:247–268

  • Uličný D, Hladíková J, Hradecká L (1993) Record of sea-level changes, oxygen depletion and the δ13C anomaly across the Cenomanian–Turonian boundary, Bohemian Cretaceous Basin. Cret Res 14:211–234

    Article  Google Scholar 

  • Uličný D, Hladíková J, Attrep MJ, Čech S, Hradecká L, Svobodová M (1997) Sea-level changes and geochemical anomalies across the Cenomanian–Turonian boundary: Pecínov quarry, Bohemia. Palaeogeogr Palaeoclimatol Palaeoecol 132:265–285

    Article  Google Scholar 

  • Uličný D, Laurin J, Čech S (2009) Controls on clastic sequence geometries in a shallow-marine transtensional basin: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology 56:1077–1114

    Article  Google Scholar 

  • Voigt T (1999) Ablagerungsbedingungen und Taphonomie der Schmilka-Formation (Unter-Turon) südlich von Pirna (Sächsisches Kreidebecken). Greifswalder Greifsw Geowiss Beitr 6:193–207

    Google Scholar 

  • Voigt T, Tröger K-A (1996) Sea-level changes during the Late Cenomanian and Early Turonian in the Saxonian Cretaceous Basin. Mitt Geol Paläont Inst Univ Hamburg 77:275–290

    Google Scholar 

  • Voigt S, Gale AS, Voigt T (2006) Sea-level changes, carbon cycling and palaeoclimate during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental analysis. Cret Res 27:836–858

    Article  Google Scholar 

  • Voigt S, Erbacher J, Mutterlose J, Wonik T, Westerhold T, Wiese F, Wilmsen M, Weiss W (2008) The Cenomanian/Turonian of the Wunstorf section (N Germany): global stratigraphic reference section and new orbital time scale for Oceanic Anoxic Event 2. Newsl Stratigr 43:65–89

    Article  Google Scholar 

  • Wiese F (2009) The Söhlde Formation (Cenomanian, Turonian) of NW Germany: shallow marine pelagic red beds. SEPM Spec Publ 91:153–170

    Google Scholar 

  • Wilmsen M (2003) Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cret Res 24:525–568

    Article  Google Scholar 

  • Wilmsen M, Niebuhr B (2010) On the age of the Upper Cretaceous transgression between Regensburg and Neuburg an der Donau (Bavaria, southern Germany). N Jb Geol Paläont 256:267–278

    Article  Google Scholar 

  • Wilmsen M, Wood CJ, Niebuhr B, Kaplan U (2009) Cenomanian–Coniacian ammonoids of the Danubian Cretaceous Group (Bavaria, southern Germany). SDGG 65:111–124

    Google Scholar 

  • Wilmsen M, Niebuhr B, Chellouche P, Pürner T, Kling M (2010a) Facies pattern and sea-level dynamics of the early Late Cretaceous transgression: a case study from the lower Danubian Cretaceous Group (Bavaria, southern Germany). Facies 56:483–507

    Article  Google Scholar 

  • Wilmsen M, Niebuhr B, Chellouche P (2010b) Occurrence and significance of Cenomanian belemnites in the lower Danubian Cretaceous Group (Bavaria, southern Germany). Acta Geol Polon 60:231–241

    Google Scholar 

  • Wilmsen M, Vodrážka R, Niebuhr B (2011) The Upper Cenomanian and Lower Turonian of Lockwitz (Dresden area, Saxony, Germany): lithofacies, stratigraphy and fauna of a transgressive succession. Freiberger Forsch H C 540:27–45

    Google Scholar 

  • Žítt J, Vodrážka R, Hradecká L, Svobodová M, Zágoršek K (2006) Late Cretaceous environments and communities as recorded at Chrtníky (Bohemian Cretaceous Basin, Czech Republic). Bull Geosci 81:43–79

    Google Scholar 

Download references

Acknowledgments

Constructive reviews by K.-A. Tröger (TU Bergakadamie Freiberg) and T. Voigt (Universität Jena) are gratefully acknowledged. We also thank Thomas Pürner (LfU in Marktredwitz) for scientific and logistic support, and Steffen Stark (LfU in Hof) for access to the studied cores in the core workshop. NR and MW acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG, project WI 1743/6-1). Steffen Weinhold (Dresden) is thanked for drawing some of the sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Richardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richardt, N., Wilmsen, M. & Niebuhr, B. Late Cenomanian–Early Turonian facies development and sea-level changes in the Bodenwöhrer Senke (Danubian Cretaceous Group, Bavaria, Germany). Facies 59, 803–827 (2013). https://doi.org/10.1007/s10347-012-0337-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-012-0337-x

Keywords

Navigation